爱奇艺大数据实时项目统计项目

一、项目介绍

1、功能开发:

功能一:今天到现在为止,每个栏目的访问量

功能二:从搜索引擎引流过来的,每个栏目的访问量

二、Pyhton脚本实现模拟日志生产,定时执行

#coding=UTF-8
import random
import time

url_paths = [
   "www/2",
   "www/1",
   "www/6",
   "www/4",
   "www/3",
   "pianhua/130",
   "toukouxu/821"
]

status_code = [404,302,200]

ip_slices = [132,156,124,10,29,167,143,187,30,100]

http_referers = [
  "https://www.baidu.com/s?wd={query}",
  "https://www.sogou.com/web?qu={query}",
  "http://cn.bing.com/search?q={query}",
  "https://search.yahoo.com/search?p={query}"
]

search_keyword = [
    "猎场",
    "快乐人生",
    "极限挑战",
    "我的体育老师",
    "幸福满院"
]
#ip��ַ
def sample_ip():
	slice = random.sample(ip_slices,4)
	return ".".join([str(item) for item in slice])

def sample_url():
	return random.sample(url_paths,1)[0]
def sample_status():
    return random.sample(status_code,1)[0]
def sample_referer():
	if random.uniform(0,1) > 0.2:
		return "-"
	refer_str = random.sample(http_referers,1)
	#print refer_str[0]
	query_str = random.sample(search_keyword,1)
	#print query_str[0]
	return refer_str[0].format(query=query_str[0])


#����log
def generate_log(count=10):
	time_str = time.strftime("%Y-%m-%d %H:%M:%S",time.localtime())
	#f = open("D://test//in.log","w+")
	f = open("/root/data/shishi/data20200401.log","a+")
	while count >= 1:
		query_log = "{ip}\t{localtime}\t\"GET {url} HTTP/1.0\"\t{referece}\t{status1}".format(ip=sample_ip(),url=sample_url(),status1=sample_status(),referece=sample_referer(),localtime=time_str)
		#print query_log
		f.write(query_log+"\n")
		count = count-1


if __name__ == '__main__':
	generate_log(100)
	#print "1111"

1、mkLog.sh脚本

python /root/data/shishi/generate.py

2、定时(每一分钟执行一次)执行生产日志脚本

crontab -e

*/1 * * * * /root/data/shishi/mkLog.sh

三、Kafka、Flume应用

1、启动zookeeper、kafka

 bin/kafka-server-start.sh config/server.properties &

创建一个主题

bin/kafka-topics.sh --create --zookeeper hdp-1:2181 --replication-factor 1 --partitions 1 --topic flumeTopic

bin/kafka-topics.sh --list --zookeeper hdp-1:2181

  启动 Kafka consumer:(测试是否可以收到消息)

bin/kafka-console-consumer.sh --topic flumeTopic --bootstrap-server hdp-1:9092 --from-beginning

  启动flume

./flume-ng agent -C ../conf/ -f ../conf2/flume_kafka.conf -n ag1 -Dflume.root.logger=INFO,console

四、Hbase表设计及其API

1、选择什么数据库作为统计结构存储呢?
     关系型数据库 RDBMS:MySQL Oracle

day        categoryId click_count
20171117       1          10
20171117       2          19

下一个批次数据进来以后,我们需要取出 20171117 1 对应的值 10 + 对应的数据,比较麻烦。而Hbase 一个 API 就能搞定,非常方便。

2、Hbase表设计

(1)启动hdfs,zookeeper

(2)创建存储表:每个栏目的访问量表、搜索引擎下每个栏目的访问量表

create 'category_clickcount','info'

create 'category_search_clickcount','info'

#查看表       list
#查看结构     desc ‘category_clickcount’
#查询数据     scan ‘category_clickcount’   

3、HbaseUtil工具类,实现连接hbase添加数据(单例)

package com.xin.hbase;

import org.apache.hadoop.hbase.client.HBaseAdmin;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.client.HBaseAdmin;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.util.Bytes;
import java.io.IOException;
import java.io.IOException;

/**
 * Created by xinBa.
 * User: 辛聪明
 * Date: 2020/4/2
 */
public class HbaseUtil {
        HBaseAdmin admin = null;
        Configuration configration = null;
        /**
         * 私有构造方法  配置configuration,获得admin
         */
        private HbaseUtil(){
            configration = new Configuration();
            configration.set("hbase.zookeeper.quorum","hdp-1:2181");
            configration.set("hbase.rootdir","hdfs://hdp-1/hbase");
            try {
                admin = new HBaseAdmin(configration);
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
//        静态类对象
        private static HbaseUtil instance = null;
//      同步锁,获取一个不为null的类对象    --> 单例
        public static synchronized HbaseUtil getInstance(){
            if(null == instance){
                instance = new HbaseUtil();
            }
            return instance;
        }
        /**
         * 根据表名获取到 Htable 实例
         */
        public HTable getTable(String tableName){
            HTable table = null;
            try {
                table = new HTable(configration,tableName);
            } catch (IOException e) {
                e.printStackTrace();
            }
            return table;
        }
        /**
         * 添加一条记录到 Hbase 表 70 30 128 32 核 200T 8000
         * @param tableName Hbase 表名
         * @param rowkey Hbase 表的 rowkey
         * @param cf Hbase 表的 columnfamily
         * @param column Hbase 表的列
         * @param value 写入 Hbase 表的值
         */
        public void put(String tableName,String rowkey,String cf,String column,String value){
            HTable table = getTable(tableName);
            Put put = new Put(Bytes.toBytes(rowkey));
            put.add(Bytes.toBytes(cf),Bytes.toBytes(column),Bytes.toBytes(value));
            try {
                table.put(put);
            } catch (IOException e) {
                e.printStackTrace();
            }
        }

        public static void main(String[] args) {
//HTable table = HBaseUtil.getInstance().getTable("category_clickcount");
//System.out.println(table.getName().getNameAsString());
            String tableName = "category_clickcount";
            String rowkey = "20271111_88";
            String cf="info";
            String column ="click_count";
            String value = "2";
            HbaseUtil.getInstance().put(tableName,rowkey,cf,column,value);
        }
}

五、SparkStreaming实时处理

1、SparkStreaming实时消费kafka数据,进行数据处理后结果保存到hbase

      pom.xml


        
            org.apache.spark
            spark-core_2.11
            2.1.0
        
        
            mysql
            mysql-connector-java
            5.1.33
        

        






        
            org.apache.hadoop
            hadoop-client
            2.7.1
        
        
            org.apache.hbase
            hbase-client
            1.2.0
        

        
            org.apache.hbase
            hbase-server
            1.2.0
        
        
            org.apache.spark
            spark-streaming_2.11
            2.1.0
        

        
            org.apache.spark
            spark-streaming-kafka_2.11
            1.5.2
        
        
            org.apache.kafka
            kafka-clients
            2.1.1
        







    
    
        
            
                
                
                    net.alchim31.maven
                    scala-maven-plugin
                    3.2.2
                

                
                
                    org.apache.maven.plugins
                    maven-compiler-plugin
                    3.5.1
                
            
        
        
            
                net.alchim31.maven
                scala-maven-plugin
                
                    
                        scala-compile-first
                        process-resources
                        
                            add-source
                            compile
                        
                    
                    
                        scala-test-compile
                        process-test-resources
                        
                            testCompile
                        
                    
                
            

            
                org.apache.maven.plugins
                maven-compiler-plugin
                
                    
                        compile
                        
                            compile
                        
                    
                
            

            
            
                org.apache.maven.plugins
                maven-shade-plugin
                2.4.2
                
                    
                        package
                        
                            shade
                        
                        
                            
                                
                                    *:*
                                    
                                        META-INF/*.SF
                                        META-INF/*.DSA
                                        META-INF/*.RSA
                                    
                                
                            
                        
                    
                
            
        
    

Consummer.scala消费数据

package com.xin.kafka

import com.xin.dao.{CategaryClickCountDAO, CategorySearchClickCountDao}
import com.xin.dao.CategaryClickCountDAO.CategaryClickCount
import com.xin.dao.CategorySearchClickCountDao.CategarSearchClickCount
import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}

import scala.collection.mutable.ListBuffer

/**
 * Created by xinBa.
 * User: 辛聪明
 * Date: 2020/4/2
 */
object Consummer {
  def main(args: Array[String]): Unit = {
    val sparkConf: SparkConf = new SparkConf().setAppName("shishi")
//      .setMaster("local[*]")
    val ssc = new StreamingContext(sparkConf,Seconds(5))
    val kafkaDStream: ReceiverInputDStream[(String, String)] = KafkaUtils.createStream(
      ssc,
      "hdp-1:2181", //zookeeper
      "flumeTopic", //消费者组groupid
      Map("flumeTopic" -> 3) //map中存放多个topic主题,格式为:
    )
    //将消费的数据转成DStream     kafka传过来数据是 k默认null,v是我们输入的值
    val logs: DStream[String] = kafkaDStream.flatMap((tuple: (String, String)) =>tuple._2.split(","))

    /**
     * 一、清洗数据,过滤出无用数据.将数据封装成DStream[clickLog]
     * 日志格式:143.29.187.156	2020-04-01 17:42:41	"GET www/4 HTTP/1.0"	https://www.sogou.com/web?qu=猎场	404
     */
    val cleanData: DStream[clickLog] = logs.map(line =>{
      val infos = line.split("\t")
      val url = infos(2).split(" ")(1)
      var categaryId = 0
      //把爱奇艺的类目编号拿到了
      if(url.startsWith("www")){
        categaryId = url.split("/")(1).toInt
      }
//      infos(0)-->ip   infos(1)-->date  categaryId-->节目编号
//      infos(4)-->状态码  infos(3):搜索方式
      clickLog(infos(0),DataUtils.parseToMinute(infos(1)),categaryId,infos(4).toInt,infos(3))
    }).filter((clickLog: clickLog) =>clickLog.categaryId != 0)

    /**
     * 二、保存收集数据到 HBase里面
     * 功能需求:每个类别每天的点击量
     */
    cleanData.map(log=>{
      //date:yyyyMMdd
      (log.date.substring(0,8)+"_"+log.categaryId,1)
    }).reduceByKey(_+_).foreachRDD(rdd=>{
      rdd.foreachPartition((partriosRdds: Iterator[(String, Int)]) =>{
        val list = new ListBuffer[CategaryClickCount]
        partriosRdds.foreach(pair=>{
          list.append(CategaryClickCount(pair._1,pair._2))
        })
        //将结果数据保存到hbase,计数器实现同rowkey的count累加
        CategaryClickCountDAO.save(list)
      })
    })

    /**
     * 三、保存收集数据到 HBase里面
     * 功能需求:从搜索引擎引流过来的每个类别每天的点击量
     */
    cleanData.map(log=>{
      //      https://www.sogou.com/web?qu=猎场
      val refren: String = log.types
      val strings: Array[String] = refren.replaceAll("//","/").split("/")
      var host = ""
      if(strings.length>2){
        host = strings(1)
      }
      (host,log.categaryId,log.date)
    }).filter(_._1 != "").map(x=>{
      (x._3.substring(0,8)+"_"+x._1+"_"+x._2,1)
    }).reduceByKey(_+_).foreachRDD(rdd=>{
      rdd.foreachPartition((partriosRdds: Iterator[(String, Int)]) =>{
        val list = new ListBuffer[CategarSearchClickCount]
        partriosRdds.foreach(pair=>{
          list.append(CategarSearchClickCount(pair._1,pair._2))
        })
        //将结果数据保存到hbase,计数器实现同rowkey的count累加
        CategorySearchClickCountDao.save(list)
      })
    })

    ssc.start()
    ssc.awaitTermination()
  }

  case class clickLog(ip:String,date : String,categaryId:Int,statusid:Int,types:String)
}
CategaryClickCountDAO
package com.xin.dao

import com.xin.hbase.HbaseUtil
import org.apache.hadoop.hbase.client.{Get, HTable}
import org.apache.hadoop.hbase.util.Bytes

import scala.collection.mutable.ListBuffer

/**
  * 功能开发:今天到现在为止,每个栏目的访问量
  */
object CategaryClickCountDAO {

     val tableName = "category_clickcount"
     val cf = "info"
     val qualifer = "click_count"     //属性

    /**
      * 保存数据
      * @param list
      */
    def save(list:ListBuffer[CategaryClickCount]): Unit ={
      val table: HTable =  HbaseUtil.getInstance().getTable(tableName)
        for(els <- list){
          //计数器    相同rowkey(categaryID),相同列簇、相同属性的amount(clickCout)会相加
            table.incrementColumnValue(Bytes.toBytes(els.categaryID),Bytes.toBytes(cf),Bytes.toBytes(qualifer),els.clickCout);
        }
    }

  /**
   * 获取指定rowkey的指定列簇指定属性的值,null-->0L not null-->转换long类型
   * 主要功能:获取count数量
   * @param day_categary
   */
    def count(day_categary:String) : Long={
        val table: HTable =HbaseUtil.getInstance().getTable(tableName)   //获取表
        val get = new Get(Bytes.toBytes(day_categary))            //获取指定rowkey数据
        val  value: Array[Byte] =  table.get(get).getValue(Bytes.toBytes(cf), Bytes.toBytes(qualifer))
         if(value == null){
           0L
         }else{
             Bytes.toLong(value)
         }
    }

    def main(args: Array[String]): Unit = {
//       val list = new ListBuffer[CategaryClickCount]
//        list.append(CategaryClickCount("20171122_1",1))
//        list.append(CategaryClickCount("20171122_9", 2))
//        list.append(CategaryClickCount("20171122_10", 3))
//        save(list)

        print(count("20200404_4"))
    }

  case class CategaryClickCount(categaryID:String,clickCout:Int)
}

CategorySearchClickCountDao 

package com.xin.dao

import com.xin.hbase.HbaseUtil
import org.apache.hadoop.hbase.client.{Get, HTable}
import org.apache.hadoop.hbase.util.Bytes

import scala.collection.mutable.ListBuffer

/**
 * Created by xinBa.
 * User: 辛聪明
 * Date: 2020/4/4
 * 功能二:功能一+从搜索引擎引流过来的
 * (本类和CategoryClickCountDao除了表名,属性名之外基本一致)
 */
object CategorySearchClickCountDao {

    val tableName = "category_search_clickcount"
    val cf = "info"
    val qualifer = "search_click_count"

    def save(list: ListBuffer[CategarSearchClickCount]): Unit ={
      val table: HTable = HbaseUtil.getInstance().getTable(tableName)
      list.foreach(child=>{
        table.incrementColumnValue(Bytes.toBytes(child.day_search_categary),Bytes.toBytes(cf),
          Bytes.toBytes(qualifer),child.clickCount)
      })
    }

    def count(day_categary:String) : Long={
      val table =HbaseUtil.getInstance().getTable(tableName)
      val get = new Get(Bytes.toBytes(day_categary))
      val value = table.get(get).getValue(Bytes.toBytes(cf), Bytes.toBytes(qualifer))
      if(value == null){
        0L
      }else{
        Bytes.toLong(value)
      }
    }
    def main(args: Array[String]): Unit = {
      val list = new ListBuffer[CategarSearchClickCount]
      list.append(CategarSearchClickCount("20171122_1_8",300))
      list.append(CategarSearchClickCount("20171122_2_9", 600))
      list.append(CategarSearchClickCount("20171122_2_10", 1600))
      save(list)
      print(count("20171122_2_2")+"---")
    }
  case class CategarSearchClickCount(day_search_categary:String,clickCount:Int)
}


DataUtils 

package com.xin.kafka

import java.util.Date
import org.apache.commons.lang3.time.FastDateFormat

/**
 * Created by xinBa.
 * User: 辛聪明
 * Date: 2020/4/2
 * 注释: 此工具类实现将yyyy-MM-dd HH:mm:ss格式转换成yyyyMMdd
 */
object DataUtils {
  val YYYYMMDDHHMMSS_FORMAT = FastDateFormat.getInstance("yyyy-MM-dd HH:mm:ss");
  val TARGE_FORMAT = FastDateFormat.getInstance ("yyyyMMdd");

  def getTime (time: String) = {
      YYYYMMDDHHMMSS_FORMAT.parse (time).getTime
  }

  def parseToMinute (time: String) = {
      TARGE_FORMAT.format (new Date (getTime (time) ) )
  }

  def main (args: Array[String] ): Unit = {
      println (parseToMinute ("2017-11-22 01:20:20") )
  }
}

六、服务器环境运行

1、环境准备

启动hdfs、zookeeper、kafka、flume、hbase、spark以及确保crontab执行

2、执行jar程序

spark-submit \
--master spark://hdp-1:7077 \
--class com.xin.kafka.Consummer \
/root/data/shishi/sparkdemo.jar

3、观察hbase两个表数据变化,JAVA API 操作是以十六进制存储数值数据。一般用数字0到9和字母A到F(或a~f)表示,其中:A~F表示10~15,这些称作十六进制数字

七、可视化展示

1、构建SpringBoot项目,添加依赖


    org.springframework.boot
    spring-boot-starter-thymeleaf


    org.apache.hbase
    hbase-client
    1.2.0

2、Utils类,根据天来获取 HBase 表中的类目访问次数

package com.xin.spark.utils;

import com.xin.spark.domain.CategoryClickCount;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.Filter;
import org.apache.hadoop.hbase.filter.PrefixFilter;
import org.apache.hadoop.hbase.util.Bytes;
import org.junit.Test;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
/**
 * HBase 操作工具类
 */
public class HBaseUtils {
    private HBaseAdmin admin = null;
    private Configuration configration = null;
    /**
     * 私有构造方法
     */
    private HBaseUtils(){
        configration = new Configuration();
        configration.set("hbase.zookeeper.quorum", "hdp-1:2181");
        configration.set("hbase.rootdir", "hdfs://hdp-1/hbase");
        try {
            admin = new HBaseAdmin(configration);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    private static HBaseUtils instance = null;
    /**
     * 获取单实例对象
     * @return
     */
    public static synchronized HBaseUtils getInstance(){
        if(null == instance){
            instance = new HBaseUtils();
        }
        return instance;
    }
    /**
     * 根据表明获取到 Htable 实例
     * @param tableName
     * @return
     */
    public HTable getTable(String tableName){
        HTable table = null;
        try {
            table = new HTable(configration,tableName);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return table;
    }
    /**
     * 添加一条记录到 Hbase 表 70 30 128 32 核 200T 8000
     *
     * @param tableName Hbase 表名
     * @param rowkey Hbase 表的 rowkey
     * @param cf Hbase 表的 columnfamily
     * @param column Hbase 表的列
     * @param value 写入 Hbase 表的值
     */
    public void put(String tableName,String rowkey,String cf,String column,String value){
        HTable table = getTable(tableName);
        Put put = new Put(Bytes.toBytes(rowkey));
        put.add(Bytes.toBytes(cf),Bytes.toBytes(column),Bytes.toBytes(value));
        try {
            table.put(put);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
    /**
     * 根据表名输入条件获取 Hbase 的记录数
     */
    public Map query(String tableName, String condition) throws IOException {
        Map map = new HashMap<>();
        HTable table = getTable(tableName);
        String cf = "info";
        String qualifier = "click_count";
//      创建扫描仪
        Scan scan = new Scan();
//      创建前缀过滤器
        Filter filter = new PrefixFilter(Bytes.toBytes(condition));
        scan.setFilter(filter);

        ResultScanner rs = table.getScanner(scan);
        for (Result result : rs) {
//          得到rowkey
            String row = Bytes.toString(result.getRow());
            //Byte直接转long,先转string在转long会报错
            long clickCount = Bytes.toLong(result.getValue(cf.getBytes(),
                    qualifier.getBytes()));

            map.put(row, clickCount);
        }
        return map;
    }

    public void getOneDataByRowKey(String tableName,String rowkey)throws Exception{
        HTable table = getTable(tableName);
        Get g=new Get(Bytes.toBytes(rowkey));
        Result r=table.get(g);
        for(KeyValue k:r.raw()){
            System.out.println("行号: "+Bytes.toStringBinary(k.getRow()));
            System.out.println("时间戳: "+k.getTimestamp());
            System.out.println("列簇: "+Bytes.toStringBinary(k.getFamily()));
            System.out.println("列: "+Bytes.toStringBinary(k.getQualifier()));
//if(Bytes.toStringBinary(k.getQualifier()).equals("myage")){
// System.out.println("值: "+Bytes.toInt(k.getValue()));
//}else{
            long ss= Bytes.toLong(k.getValue());
            System.out.println("值: "+ss);
//}
        }
        table.close();
    }

    public static void main(String[] args) throws Exception {
        Map map = HBaseUtils.getInstance().query("category_clickcount",
                "20200404");
        for (Map.Entry entry : map.entrySet()) {
            System.out.println(entry.getKey() + " : " + entry.getValue());
        }
//        HBaseUtils.getInstance().getOneDataByRowKey("category_clickcount","20200404_1");
    }
}

   类别访问数量实体类   CategoryClickCount

package com.xin.spark.domain;

/**
 * Created by xinBa.
 * User: 辛聪明
 * Date: 2020/4/5
 * 类别访问数量实体类
 */
public class CategoryClickCount {
    private String categoryName;
    private long value;

    public String getCategoryName() {
        return categoryName;
    }

    public void setCategoryName(String categoryName) {
        this.categoryName = categoryName;
    }

    public long getValue() {
        return value;
    }

    public void setValue(long value) {
        this.value = value;
    }

    @Override
    public String toString() {
        return "CategoryClickCount{" +
                "categoryName='" + categoryName + '\'' +
                ", value=" + value +
                '}';
    }
}

dao类,实现功能调用

package com.xin.spark.dao;

import com.xin.spark.domain.CategoryClickCount;
import com.xin.spark.utils.HBaseUtils;
import org.springframework.stereotype.Repository;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

/**
 * Created by xinBa.
 * User: 辛聪明
 * Date: 2020/4/5
 */
@Repository
public class CategoryClickCountDAO {
//   查询调用hbaseutils
    public List query(String day) throws IOException {
        List list = new ArrayList<>();
        Map map = HBaseUtils.getInstance().query("category_clickcount",day);
        for (Map.Entry entry : map.entrySet()) {
            CategoryClickCount categoryClickCount = new CategoryClickCount();
            categoryClickCount.setCategoryName(entry.getKey());;
            categoryClickCount.setValue(entry.getValue());
            list.add(categoryClickCount);
        }
        return list;
    }
    public static void main(String[] args) throws IOException {
        CategoryClickCountDAO dao = new CategoryClickCountDAO();
        List list = dao.query("20200404");
        for (CategoryClickCount c : list) {
            System.out.println(c.getValue());
        }
    }

}

controller类

package com.xin.spark.controller;

import com.xin.spark.dao.CategoryClickCountDAO;
import com.xin.spark.domain.CategoryClickCount;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
import org.springframework.web.bind.annotation.ResponseBody;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.servlet.ModelAndView;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * Created by xinBa.
 * User: 辛聪明
 * Date: 2020/4/5
 * 视频类目访问量实时查询展示功能实现以及扩展
 */
@RestController
public class SparkStatAPP {

    private static Map courses = new HashMap<>();
    static {
        courses.put("1","偶像爱情");
        courses.put("2","宫斗谋权");
        courses.put("3","玄幻史诗");
        courses.put("4", "都市生活");
        courses.put("5", "罪案谍战");
        courses.put("6", "历险科幻");
    }

    @Autowired
    CategoryClickCountDAO courseClickCountDAO;

    @RequestMapping(value = "/CategoryClickCount", method = RequestMethod.POST)
    @ResponseBody
    public List courseClickCount() throws Exception {
        List list = courseClickCountDAO.query("20200404");
        for(CategoryClickCount model:list){
            String s = courses.get(model.getCategoryName().substring(9));
            if (s!=null){
                model.setCategoryName(s);
            }else {
                model.setCategoryName("其他");
            }
        }
        System.out.println("list:"+list);
        return list;
    }
    @RequestMapping(value = "/echarts", method = RequestMethod.GET)
    public ModelAndView echarts(){
        return new ModelAndView("echarts");
    }
}

前端展示页面




    
    实时统计品类点击





 

你可能感兴趣的:(Hadoop生态圈)