朴素贝叶斯垃圾邮件分类
- 读邮件数据集文件,提取邮件本身与标签。
2.邮件预处理
2.1传统方法
2.1 nltk库 分词
nltk.sent_tokenize(text) #对文本按照句子进行分割
nltk.word_tokenize(sent) #对句子进行分词
2.2 punkt 停用词
from nltk.corpus import stopwords
stops=stopwords.words('english')
2.3 NLTK 词性标注
nltk.pos_tag(tokens)
2.4 Lemmatisation(词性还原)
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
lemmatizer.lemmatize('leaves') #缺省名词
lemmatizer.lemmatize('best',pos='a')
lemmatizer.lemmatize('made',pos='v')
一般先要分词、词性标注,再按词性做词性还原。
2.5 编写预处理函数
def preprocessing(text):
sms_data.append(preprocessing(line[1])) #对每封邮件做预处理
复制代码
import csv
import nltk
from mistune import preprocessing
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
def preprocessing(text):
# 分词
fenge = []
for sent in nltk.sent_tokenize(text):
for word in nltk.word_tokenize(sent):
fenge.append(word)
# 停用词
stops = stopwords.words("english")
tingyong = [i for i in fenge if i not in stops]
# 磁性标注
nltk.pos_tag(tingyong)
# 磁性还原
lemmatizer = WordNetLemmatizer()
huanyuan = []
for i in tingyong:
huanyuan.append(lemmatizer.lemmatize(i, pos='v'))
for i in tingyong:
huanyuan.append(lemmatizer.lemmatize(i, pos='a'))
for i in tingyong:
huanyuan.append(lemmatizer.lemmatize(i, pos='n'))
return huanyuan
file_path=r'C:\Users\we\Desktop\SMSSpamCollection'
sms=open(file_path,'r',encoding='utf-8')
sms_data=[]
sms_label=[]
csv_reader=csv.reader(sms,delimiter='\t')
for line in csv_reader:
sms_label.append(line[0])
sms_data.append(preprocessing(line[1]))
sms.close()
print("分词标注停用还原后的数据",sms_data[1:10])
print("邮件分类2",sms_label)
复制代码
-
训练集与测试集
-
词向量
-
模型