本章是"JUC系列"的CopyOnWriteArrayList篇。接下来,会先对CopyOnWriteArrayList进行基本介绍,然后再说明它的原理,接着通过代码去分析,最后通过示例更进一步的了解CopyOnWriteArrayList。内容包括:
CopyOnWriteArrayList介绍
CopyOnWriteArrayList原理和数据结构
CopyOnWriteArrayList函数列表
CopyOnWriteArrayList源码分析(JDK1.7.0_40版本)
CopyOnWriteArrayList示例
转载请注明出处:http://www.cnblogs.com/skywang12345/p/3498483.html
它相当于线程安全的ArrayList。和ArrayList一样,它是个可变数组;但是和ArrayList不同的时,它具有以下特性:
1. 它最适合于具有以下特征的应用程序:List 大小通常保持很小,只读操作远多于可变操作,需要在遍历期间防止线程间的冲突。
2. 它是线程安全的。
3. 因为通常需要复制整个基础数组,所以可变操作(add()、set() 和 remove() 等等)的开销很大。
4. 迭代器支持hasNext(), next()等不可变操作,但不支持可变 remove()等操作。
5. 使用迭代器进行遍历的速度很快,并且不会与其他线程发生冲突。在构造迭代器时,迭代器依赖于不变的数组快照。
建议:在学习CopyOnWriteArraySet之前,先通过"Java 集合系列03之 ArrayList详细介绍(源码解析)和使用示例"对ArrayList进行了解!
CopyOnWriteArrayList的数据结构,如下图所示:
说明:
1. CopyOnWriteArrayList实现了List接口,因此它是一个队列。
2. CopyOnWriteArrayList包含了成员lock。每一个CopyOnWriteArrayList都和一个互斥锁lock绑定,通过lock,实现了对CopyOnWriteArrayList的互斥访问。
3. CopyOnWriteArrayList包含了成员array数组,这说明CopyOnWriteArrayList本质上通过数组实现的。
下面从“动态数组”和“线程安全”两个方面进一步对CopyOnWriteArrayList的原理进行说明。
1. CopyOnWriteArrayList的“动态数组”机制 -- 它内部有个“volatile数组”(array)来保持数据。在“添加/修改/删除”数据时,都会新建一个数组,并将更新后的数据拷贝到新建的数组中,最后再将该数组赋值给“volatile数组”。这就是它叫做CopyOnWriteArrayList的原因!CopyOnWriteArrayList就是通过这种方式实现的动态数组;不过正由于它在“添加/修改/删除”数据时,都会新建数组,所以涉及到修改数据的操作,CopyOnWriteArrayList效率很
低;但是单单只是进行遍历查找的话,效率比较高。
2. CopyOnWriteArrayList的“线程安全”机制 -- 是通过volatile和互斥锁来实现的。(01) CopyOnWriteArrayList是通过“volatile数组”来保存数据的。一个线程读取volatile数组时,总能看到其它线程对该volatile变量最后的写入;就这样,通过volatile提供了“读取到的数据总是最新的”这个机制的
保证。(02) CopyOnWriteArrayList通过互斥锁来保护数据。在“添加/修改/删除”数据时,会先“获取互斥锁”,再修改完毕之后,先将数据更新到“volatile数组”中,然后再“释放互斥锁”;这样,就达到了保护数据的目的。
// 创建一个空列表。 CopyOnWriteArrayList() // 创建一个按 collection 的迭代器返回元素的顺序包含指定 collection 元素的列表。 CopyOnWriteArrayList(Collection<? extends E> c) // CopyOnWriteArrayList(E[] toCopyIn) 创建一个保存给定数组的副本的列表。 // 将指定元素添加到此列表的尾部。 boolean add(E e) // 在此列表的指定位置上插入指定元素。 void add(int index, E element) // 按照指定 collection 的迭代器返回元素的顺序,将指定 collection 中的所有元素添加此列表的尾部。 boolean addAll(Collection<? extends E> c) // 从指定位置开始,将指定 collection 的所有元素插入此列表。 boolean addAll(int index, Collection<? extends E> c) // 按照指定 collection 的迭代器返回元素的顺序,将指定 collection 中尚未包含在此列表中的所有元素添加列表的尾部。 int addAllAbsent(Collection<? extends E> c) // 添加元素(如果不存在)。 boolean addIfAbsent(E e) // 从此列表移除所有元素。 void clear() // 返回此列表的浅表副本。 Object clone() // 如果此列表包含指定的元素,则返回 true。 boolean contains(Object o) // 如果此列表包含指定 collection 的所有元素,则返回 true。 boolean containsAll(Collection<?> c) // 比较指定对象与此列表的相等性。 boolean equals(Object o) // 返回列表中指定位置的元素。 E get(int index) // 返回此列表的哈希码值。 int hashCode() // 返回第一次出现的指定元素在此列表中的索引,从 index 开始向前搜索,如果没有找到该元素,则返回 -1。 int indexOf(E e, int index) // 返回此列表中第一次出现的指定元素的索引;如果此列表不包含该元素,则返回 -1。 int indexOf(Object o) // 如果此列表不包含任何元素,则返回 true。 boolean isEmpty() // 返回以恰当顺序在此列表元素上进行迭代的迭代器。 Iterator<E> iterator() // 返回最后一次出现的指定元素在此列表中的索引,从 index 开始向后搜索,如果没有找到该元素,则返回 -1。 int lastIndexOf(E e, int index) // 返回此列表中最后出现的指定元素的索引;如果列表不包含此元素,则返回 -1。 int lastIndexOf(Object o) // 返回此列表元素的列表迭代器(按适当顺序)。 ListIterator<E> listIterator() // 返回列表中元素的列表迭代器(按适当顺序),从列表的指定位置开始。 ListIterator<E> listIterator(int index) // 移除此列表指定位置上的元素。 E remove(int index) // 从此列表移除第一次出现的指定元素(如果存在)。 boolean remove(Object o) // 从此列表移除所有包含在指定 collection 中的元素。 boolean removeAll(Collection<?> c) // 只保留此列表中包含在指定 collection 中的元素。 boolean retainAll(Collection<?> c) // 用指定的元素替代此列表指定位置上的元素。 E set(int index, E element) // 返回此列表中的元素数。 int size() // 返回此列表中 fromIndex(包括)和 toIndex(不包括)之间部分的视图。 List<E> subList(int fromIndex, int toIndex) // 返回一个按恰当顺序(从第一个元素到最后一个元素)包含此列表中所有元素的数组。 Object[] toArray() // 返回以恰当顺序(从第一个元素到最后一个元素)包含列表所有元素的数组;返回数组的运行时类型是指定数组的运行时类型。 <T> T[] toArray(T[] a) // 返回此列表的字符串表示形式。 String toString()
JDK1.7.0_40版本中CopyOnWriteArrayList.java的完整源码如下:
1 /* 2 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved. 3 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 * 21 * 22 * 23 * 24 */ 25 26 /* 27 * Written by Doug Lea with assistance from members of JCP JSR-166 28 * Expert Group. Adapted and released, under explicit permission, 29 * from JDK ArrayList.java which carries the following copyright: 30 * 31 * Copyright 1997 by Sun Microsystems, Inc., 32 * 901 San Antonio Road, Palo Alto, California, 94303, U.S.A. 33 * All rights reserved. 34 */ 35 36 package java.util.concurrent; 37 import java.util.*; 38 import java.util.concurrent.locks.*; 39 import sun.misc.Unsafe; 40 41 /** 42 * A thread-safe variant of {@link java.util.ArrayList} in which all mutative 43 * operations (<tt>add</tt>, <tt>set</tt>, and so on) are implemented by 44 * making a fresh copy of the underlying array. 45 * 46 * <p> This is ordinarily too costly, but may be <em>more</em> efficient 47 * than alternatives when traversal operations vastly outnumber 48 * mutations, and is useful when you cannot or don't want to 49 * synchronize traversals, yet need to preclude interference among 50 * concurrent threads. The "snapshot" style iterator method uses a 51 * reference to the state of the array at the point that the iterator 52 * was created. This array never changes during the lifetime of the 53 * iterator, so interference is impossible and the iterator is 54 * guaranteed not to throw <tt>ConcurrentModificationException</tt>. 55 * The iterator will not reflect additions, removals, or changes to 56 * the list since the iterator was created. Element-changing 57 * operations on iterators themselves (<tt>remove</tt>, <tt>set</tt>, and 58 * <tt>add</tt>) are not supported. These methods throw 59 * <tt>UnsupportedOperationException</tt>. 60 * 61 * <p>All elements are permitted, including <tt>null</tt>. 62 * 63 * <p>Memory consistency effects: As with other concurrent 64 * collections, actions in a thread prior to placing an object into a 65 * {@code CopyOnWriteArrayList} 66 * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a> 67 * actions subsequent to the access or removal of that element from 68 * the {@code CopyOnWriteArrayList} in another thread. 69 * 70 * <p>This class is a member of the 71 * <a href="{@docRoot}/../technotes/guides/collections/index.html"> 72 * Java Collections Framework</a>. 73 * 74 * @since 1.5 75 * @author Doug Lea 76 * @param <E> the type of elements held in this collection 77 */ 78 public class CopyOnWriteArrayList<E> 79 implements List<E>, RandomAccess, Cloneable, java.io.Serializable { 80 private static final long serialVersionUID = 8673264195747942595L; 81 82 /** The lock protecting all mutators */ 83 transient final ReentrantLock lock = new ReentrantLock(); 84 85 /** The array, accessed only via getArray/setArray. */ 86 private volatile transient Object[] array; 87 88 /** 89 * Gets the array. Non-private so as to also be accessible 90 * from CopyOnWriteArraySet class. 91 */ 92 final Object[] getArray() { 93 return array; 94 } 95 96 /** 97 * Sets the array. 98 */ 99 final void setArray(Object[] a) { 100 array = a; 101 } 102 103 /** 104 * Creates an empty list. 105 */ 106 public CopyOnWriteArrayList() { 107 setArray(new Object[0]); 108 } 109 110 /** 111 * Creates a list containing the elements of the specified 112 * collection, in the order they are returned by the collection's 113 * iterator. 114 * 115 * @param c the collection of initially held elements 116 * @throws NullPointerException if the specified collection is null 117 */ 118 public CopyOnWriteArrayList(Collection<? extends E> c) { 119 Object[] elements = c.toArray(); 120 // c.toArray might (incorrectly) not return Object[] (see 6260652) 121 if (elements.getClass() != Object[].class) 122 elements = Arrays.copyOf(elements, elements.length, Object[].class); 123 setArray(elements); 124 } 125 126 /** 127 * Creates a list holding a copy of the given array. 128 * 129 * @param toCopyIn the array (a copy of this array is used as the 130 * internal array) 131 * @throws NullPointerException if the specified array is null 132 */ 133 public CopyOnWriteArrayList(E[] toCopyIn) { 134 setArray(Arrays.copyOf(toCopyIn, toCopyIn.length, Object[].class)); 135 } 136 137 /** 138 * Returns the number of elements in this list. 139 * 140 * @return the number of elements in this list 141 */ 142 public int size() { 143 return getArray().length; 144 } 145 146 /** 147 * Returns <tt>true</tt> if this list contains no elements. 148 * 149 * @return <tt>true</tt> if this list contains no elements 150 */ 151 public boolean isEmpty() { 152 return size() == 0; 153 } 154 155 /** 156 * Test for equality, coping with nulls. 157 */ 158 private static boolean eq(Object o1, Object o2) { 159 return (o1 == null ? o2 == null : o1.equals(o2)); 160 } 161 162 /** 163 * static version of indexOf, to allow repeated calls without 164 * needing to re-acquire array each time. 165 * @param o element to search for 166 * @param elements the array 167 * @param index first index to search 168 * @param fence one past last index to search 169 * @return index of element, or -1 if absent 170 */ 171 private static int indexOf(Object o, Object[] elements, 172 int index, int fence) { 173 if (o == null) { 174 for (int i = index; i < fence; i++) 175 if (elements[i] == null) 176 return i; 177 } else { 178 for (int i = index; i < fence; i++) 179 if (o.equals(elements[i])) 180 return i; 181 } 182 return -1; 183 } 184 185 /** 186 * static version of lastIndexOf. 187 * @param o element to search for 188 * @param elements the array 189 * @param index first index to search 190 * @return index of element, or -1 if absent 191 */ 192 private static int lastIndexOf(Object o, Object[] elements, int index) { 193 if (o == null) { 194 for (int i = index; i >= 0; i--) 195 if (elements[i] == null) 196 return i; 197 } else { 198 for (int i = index; i >= 0; i--) 199 if (o.equals(elements[i])) 200 return i; 201 } 202 return -1; 203 } 204 205 /** 206 * Returns <tt>true</tt> if this list contains the specified element. 207 * More formally, returns <tt>true</tt> if and only if this list contains 208 * at least one element <tt>e</tt> such that 209 * <tt>(o==null ? e==null : o.equals(e))</tt>. 210 * 211 * @param o element whose presence in this list is to be tested 212 * @return <tt>true</tt> if this list contains the specified element 213 */ 214 public boolean contains(Object o) { 215 Object[] elements = getArray(); 216 return indexOf(o, elements, 0, elements.length) >= 0; 217 } 218 219 /** 220 * {@inheritDoc} 221 */ 222 public int indexOf(Object o) { 223 Object[] elements = getArray(); 224 return indexOf(o, elements, 0, elements.length); 225 } 226 227 /** 228 * Returns the index of the first occurrence of the specified element in 229 * this list, searching forwards from <tt>index</tt>, or returns -1 if 230 * the element is not found. 231 * More formally, returns the lowest index <tt>i</tt> such that 232 * <tt>(i >= index && (e==null ? get(i)==null : e.equals(get(i))))</tt>, 233 * or -1 if there is no such index. 234 * 235 * @param e element to search for 236 * @param index index to start searching from 237 * @return the index of the first occurrence of the element in 238 * this list at position <tt>index</tt> or later in the list; 239 * <tt>-1</tt> if the element is not found. 240 * @throws IndexOutOfBoundsException if the specified index is negative 241 */ 242 public int indexOf(E e, int index) { 243 Object[] elements = getArray(); 244 return indexOf(e, elements, index, elements.length); 245 } 246 247 /** 248 * {@inheritDoc} 249 */ 250 public int lastIndexOf(Object o) { 251 Object[] elements = getArray(); 252 return lastIndexOf(o, elements, elements.length - 1); 253 } 254 255 /** 256 * Returns the index of the last occurrence of the specified element in 257 * this list, searching backwards from <tt>index</tt>, or returns -1 if 258 * the element is not found. 259 * More formally, returns the highest index <tt>i</tt> such that 260 * <tt>(i <= index && (e==null ? get(i)==null : e.equals(get(i))))</tt>, 261 * or -1 if there is no such index. 262 * 263 * @param e element to search for 264 * @param index index to start searching backwards from 265 * @return the index of the last occurrence of the element at position 266 * less than or equal to <tt>index</tt> in this list; 267 * -1 if the element is not found. 268 * @throws IndexOutOfBoundsException if the specified index is greater 269 * than or equal to the current size of this list 270 */ 271 public int lastIndexOf(E e, int index) { 272 Object[] elements = getArray(); 273 return lastIndexOf(e, elements, index); 274 } 275 276 /** 277 * Returns a shallow copy of this list. (The elements themselves 278 * are not copied.) 279 * 280 * @return a clone of this list 281 */ 282 public Object clone() { 283 try { 284 CopyOnWriteArrayList c = (CopyOnWriteArrayList)(super.clone()); 285 c.resetLock(); 286 return c; 287 } catch (CloneNotSupportedException e) { 288 // this shouldn't happen, since we are Cloneable 289 throw new InternalError(); 290 } 291 } 292 293 /** 294 * Returns an array containing all of the elements in this list 295 * in proper sequence (from first to last element). 296 * 297 * <p>The returned array will be "safe" in that no references to it are 298 * maintained by this list. (In other words, this method must allocate 299 * a new array). The caller is thus free to modify the returned array. 300 * 301 * <p>This method acts as bridge between array-based and collection-based 302 * APIs. 303 * 304 * @return an array containing all the elements in this list 305 */ 306 public Object[] toArray() { 307 Object[] elements = getArray(); 308 return Arrays.copyOf(elements, elements.length); 309 } 310 311 /** 312 * Returns an array containing all of the elements in this list in 313 * proper sequence (from first to last element); the runtime type of 314 * the returned array is that of the specified array. If the list fits 315 * in the specified array, it is returned therein. Otherwise, a new 316 * array is allocated with the runtime type of the specified array and 317 * the size of this list. 318 * 319 * <p>If this list fits in the specified array with room to spare 320 * (i.e., the array has more elements than this list), the element in 321 * the array immediately following the end of the list is set to 322 * <tt>null</tt>. (This is useful in determining the length of this 323 * list <i>only</i> if the caller knows that this list does not contain 324 * any null elements.) 325 * 326 * <p>Like the {@link #toArray()} method, this method acts as bridge between 327 * array-based and collection-based APIs. Further, this method allows 328 * precise control over the runtime type of the output array, and may, 329 * under certain circumstances, be used to save allocation costs. 330 * 331 * <p>Suppose <tt>x</tt> is a list known to contain only strings. 332 * The following code can be used to dump the list into a newly 333 * allocated array of <tt>String</tt>: 334 * 335 * <pre> 336 * String[] y = x.toArray(new String[0]);</pre> 337 * 338 * Note that <tt>toArray(new Object[0])</tt> is identical in function to 339 * <tt>toArray()</tt>. 340 * 341 * @param a the array into which the elements of the list are to 342 * be stored, if it is big enough; otherwise, a new array of the 343 * same runtime type is allocated for this purpose. 344 * @return an array containing all the elements in this list 345 * @throws ArrayStoreException if the runtime type of the specified array 346 * is not a supertype of the runtime type of every element in 347 * this list 348 * @throws NullPointerException if the specified array is null 349 */ 350 @SuppressWarnings("unchecked") 351 public <T> T[] toArray(T a[]) { 352 Object[] elements = getArray(); 353 int len = elements.length; 354 if (a.length < len) 355 return (T[]) Arrays.copyOf(elements, len, a.getClass()); 356 else { 357 System.arraycopy(elements, 0, a, 0, len); 358 if (a.length > len) 359 a[len] = null; 360 return a; 361 } 362 } 363 364 // Positional Access Operations 365 366 @SuppressWarnings("unchecked") 367 private E get(Object[] a, int index) { 368 return (E) a[index]; 369 } 370 371 /** 372 * {@inheritDoc} 373 * 374 * @throws IndexOutOfBoundsException {@inheritDoc} 375 */ 376 public E get(int index) { 377 return get(getArray(), index); 378 } 379 380 /** 381 * Replaces the element at the specified position in this list with the 382 * specified element. 383 * 384 * @throws IndexOutOfBoundsException {@inheritDoc} 385 */ 386 public E set(int index, E element) { 387 final ReentrantLock lock = this.lock; 388 lock.lock(); 389 try { 390 Object[] elements = getArray(); 391 E oldValue = get(elements, index); 392 393 if (oldValue != element) { 394 int len = elements.length; 395 Object[] newElements = Arrays.copyOf(elements, len); 396 newElements[index] = element; 397 setArray(newElements); 398 } else { 399 // Not quite a no-op; ensures volatile write semantics 400 setArray(elements); 401 } 402 return oldValue; 403 } finally { 404 lock.unlock(); 405 } 406 } 407 408 /** 409 * Appends the specified element to the end of this list. 410 * 411 * @param e element to be appended to this list 412 * @return <tt>true</tt> (as specified by {@link Collection#add}) 413 */ 414 public boolean add(E e) { 415 final ReentrantLock lock = this.lock; 416 lock.lock(); 417 try { 418 Object[] elements = getArray(); 419 int len = elements.length; 420 Object[] newElements = Arrays.copyOf(elements, len + 1); 421 newElements[len] = e; 422 setArray(newElements); 423 return true; 424 } finally { 425 lock.unlock(); 426 } 427 } 428 429 /** 430 * Inserts the specified element at the specified position in this 431 * list. Shifts the element currently at that position (if any) and 432 * any subsequent elements to the right (adds one to their indices). 433 * 434 * @throws IndexOutOfBoundsException {@inheritDoc} 435 */ 436 public void add(int index, E element) { 437 final ReentrantLock lock = this.lock; 438 lock.lock(); 439 try { 440 Object[] elements = getArray(); 441 int len = elements.length; 442 if (index > len || index < 0) 443 throw new IndexOutOfBoundsException("Index: "+index+ 444 ", Size: "+len); 445 Object[] newElements; 446 int numMoved = len - index; 447 if (numMoved == 0) 448 newElements = Arrays.copyOf(elements, len + 1); 449 else { 450 newElements = new Object[len + 1]; 451 System.arraycopy(elements, 0, newElements, 0, index); 452 System.arraycopy(elements, index, newElements, index + 1, 453 numMoved); 454 } 455 newElements[index] = element; 456 setArray(newElements); 457 } finally { 458 lock.unlock(); 459 } 460 } 461 462 /** 463 * Removes the element at the specified position in this list. 464 * Shifts any subsequent elements to the left (subtracts one from their 465 * indices). Returns the element that was removed from the list. 466 * 467 * @throws IndexOutOfBoundsException {@inheritDoc} 468 */ 469 public E remove(int index) { 470 final ReentrantLock lock = this.lock; 471 lock.lock(); 472 try { 473 Object[] elements = getArray(); 474 int len = elements.length; 475 E oldValue = get(elements, index); 476 int numMoved = len - index - 1; 477 if (numMoved == 0) 478 setArray(Arrays.copyOf(elements, len - 1)); 479 else { 480 Object[] newElements = new Object[len - 1]; 481 System.arraycopy(elements, 0, newElements, 0, index); 482 System.arraycopy(elements, index + 1, newElements, index, 483 numMoved); 484 setArray(newElements); 485 } 486 return oldValue; 487 } finally { 488 lock.unlock(); 489 } 490 } 491 492 /** 493 * Removes the first occurrence of the specified element from this list, 494 * if it is present. If this list does not contain the element, it is 495 * unchanged. More formally, removes the element with the lowest index 496 * <tt>i</tt> such that 497 * <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt> 498 * (if such an element exists). Returns <tt>true</tt> if this list 499 * contained the specified element (or equivalently, if this list 500 * changed as a result of the call). 501 * 502 * @param o element to be removed from this list, if present 503 * @return <tt>true</tt> if this list contained the specified element 504 */ 505 public boolean remove(Object o) { 506 final ReentrantLock lock = this.lock; 507 lock.lock(); 508 try { 509 Object[] elements = getArray(); 510 int len = elements.length; 511 if (len != 0) { 512 // Copy while searching for element to remove 513 // This wins in the normal case of element being present 514 int newlen = len - 1; 515 Object[] newElements = new Object[newlen]; 516 517 for (int i = 0; i < newlen; ++i) { 518 if (eq(o, elements[i])) { 519 // found one; copy remaining and exit 520 for (int k = i + 1; k < len; ++k) 521 newElements[k-1] = elements[k]; 522 setArray(newElements); 523 return true; 524 } else 525 newElements[i] = elements[i]; 526 } 527 528 // special handling for last cell 529 if (eq(o, elements[newlen])) { 530 setArray(newElements); 531 return true; 532 } 533 } 534 return false; 535 } finally { 536 lock.unlock(); 537 } 538 } 539 540 /** 541 * Removes from this list all of the elements whose index is between 542 * <tt>fromIndex</tt>, inclusive, and <tt>toIndex</tt>, exclusive. 543 * Shifts any succeeding elements to the left (reduces their index). 544 * This call shortens the list by <tt>(toIndex - fromIndex)</tt> elements. 545 * (If <tt>toIndex==fromIndex</tt>, this operation has no effect.) 546 * 547 * @param fromIndex index of first element to be removed 548 * @param toIndex index after last element to be removed 549 * @throws IndexOutOfBoundsException if fromIndex or toIndex out of range 550 * ({@code{fromIndex < 0 || toIndex > size() || toIndex < fromIndex}) 551 */ 552 private void removeRange(int fromIndex, int toIndex) { 553 final ReentrantLock lock = this.lock; 554 lock.lock(); 555 try { 556 Object[] elements = getArray(); 557 int len = elements.length; 558 559 if (fromIndex < 0 || toIndex > len || toIndex < fromIndex) 560 throw new IndexOutOfBoundsException(); 561 int newlen = len - (toIndex - fromIndex); 562 int numMoved = len - toIndex; 563 if (numMoved == 0) 564 setArray(Arrays.copyOf(elements, newlen)); 565 else { 566 Object[] newElements = new Object[newlen]; 567 System.arraycopy(elements, 0, newElements, 0, fromIndex); 568 System.arraycopy(elements, toIndex, newElements, 569 fromIndex, numMoved); 570 setArray(newElements); 571 } 572 } finally { 573 lock.unlock(); 574 } 575 } 576 577 /** 578 * Append the element if not present. 579 * 580 * @param e element to be added to this list, if absent 581 * @return <tt>true</tt> if the element was added 582 */ 583 public boolean addIfAbsent(E e) { 584 final ReentrantLock lock = this.lock; 585 lock.lock(); 586 try { 587 // Copy while checking if already present. 588 // This wins in the most common case where it is not present 589 Object[] elements = getArray(); 590 int len = elements.length; 591 Object[] newElements = new Object[len + 1]; 592 for (int i = 0; i < len; ++i) { 593 if (eq(e, elements[i])) 594 return false; // exit, throwing away copy 595 else 596 newElements[i] = elements[i]; 597 } 598 newElements[len] = e; 599 setArray(newElements); 600 return true; 601 } finally { 602 lock.unlock(); 603 } 604 } 605 606 /** 607 * Returns <tt>true</tt> if this list contains all of the elements of the 608 * specified collection. 609 * 610 * @param c collection to be checked for containment in this list 611 * @return <tt>true</tt> if this list contains all of the elements of the 612 * specified collection 613 * @throws NullPointerException if the specified collection is null 614 * @see #contains(Object) 615 */ 616 public boolean containsAll(Collection<?> c) { 617 Object[] elements = getArray(); 618 int len = elements.length; 619 for (Object e : c) { 620 if (indexOf(e, elements, 0, len) < 0) 621 return false; 622 } 623 return true; 624 } 625 626 /** 627 * Removes from this list all of its elements that are contained in 628 * the specified collection. This is a particularly expensive operation 629 * in this class because of the need for an internal temporary array. 630 * 631 * @param c collection containing elements to be removed from this list 632 * @return <tt>true</tt> if this list changed as a result of the call 633 * @throws ClassCastException if the class of an element of this list 634 * is incompatible with the specified collection 635 * (<a href="../Collection.html#optional-restrictions">optional</a>) 636 * @throws NullPointerException if this list contains a null element and the 637 * specified collection does not permit null elements 638 * (<a href="../Collection.html#optional-restrictions">optional</a>), 639 * or if the specified collection is null 640 * @see #remove(Object) 641 */ 642 public boolean removeAll(Collection<?> c) { 643 final ReentrantLock lock = this.lock; 644 lock.lock(); 645 try { 646 Object[] elements = getArray(); 647 int len = elements.length; 648 if (len != 0) { 649 // temp array holds those elements we know we want to keep 650 int newlen = 0; 651 Object[] temp = new Object[len]; 652 for (int i = 0; i < len; ++i) { 653 Object element = elements[i]; 654 if (!c.contains(element)) 655 temp[newlen++] = element; 656 } 657 if (newlen != len) { 658 setArray(Arrays.copyOf(temp, newlen)); 659 return true; 660 } 661 } 662 return false; 663 } finally { 664 lock.unlock(); 665 } 666 } 667 668 /** 669 * Retains only the elements in this list that are contained in the 670 * specified collection. In other words, removes from this list all of 671 * its elements that are not contained in the specified collection. 672 * 673 * @param c collection containing elements to be retained in this list 674 * @return <tt>true</tt> if this list changed as a result of the call 675 * @throws ClassCastException if the class of an element of this list 676 * is incompatible with the specified collection 677 * (<a href="../Collection.html#optional-restrictions">optional</a>) 678 * @throws NullPointerException if this list contains a null element and the 679 * specified collection does not permit null elements 680 * (<a href="../Collection.html#optional-restrictions">optional</a>), 681 * or if the specified collection is null 682 * @see #remove(Object) 683 */ 684 public boolean retainAll(Collection<?> c) { 685 final ReentrantLock lock = this.lock; 686 lock.lock(); 687 try { 688 Object[] elements = getArray(); 689 int len = elements.length; 690 if (len != 0) { 691 // temp array holds those elements we know we want to keep 692 int newlen = 0; 693 Object[] temp = new Object[len]; 694 for (int i = 0; i < len; ++i) { 695 Object element = elements[i]; 696 if (c.contains(element)) 697 temp[newlen++] = element; 698 } 699 if (newlen != len) { 700 setArray(Arrays.copyOf(temp, newlen)); 701 return true; 702 } 703 } 704 return false; 705 } finally { 706 lock.unlock(); 707 } 708 } 709 710 /** 711 * Appends all of the elements in the specified collection that 712 * are not already contained in this list, to the end of 713 * this list, in the order that they are returned by the 714 * specified collection's iterator. 715 * 716 * @param c collection containing elements to be added to this list 717 * @return the number of elements added 718 * @throws NullPointerException if the specified collection is null 719 * @see #addIfAbsent(Object) 720 */ 721 public int addAllAbsent(Collection<? extends E> c) { 722 Object[] cs = c.toArray(); 723 if (cs.length == 0) 724 return 0; 725 Object[] uniq = new Object[cs.length]; 726 final ReentrantLock lock = this.lock; 727 lock.lock(); 728 try { 729 Object[] elements = getArray(); 730 int len = elements.length; 731 int added = 0; 732 for (int i = 0; i < cs.length; ++i) { // scan for duplicates 733 Object e = cs[i]; 734 if (indexOf(e, elements, 0, len) < 0 && 735 indexOf(e, uniq, 0, added) < 0) 736 uniq[added++] = e; 737 } 738 if (added > 0) { 739 Object[] newElements = Arrays.copyOf(elements, len + added); 740 System.arraycopy(uniq, 0, newElements, len, added); 741 setArray(newElements); 742 } 743 return added; 744 } finally { 745 lock.unlock(); 746 } 747 } 748 749 /** 750 * Removes all of the elements from this list. 751 * The list will be empty after this call returns. 752 */ 753 public void clear() { 754 final ReentrantLock lock = this.lock; 755 lock.lock(); 756 try { 757 setArray(new Object[0]); 758 } finally { 759 lock.unlock(); 760 } 761 } 762 763 /** 764 * Appends all of the elements in the specified collection to the end 765 * of this list, in the order that they are returned by the specified 766 * collection's iterator. 767 * 768 * @param c collection containing elements to be added to this list 769 * @return <tt>true</tt> if this list changed as a result of the call 770 * @throws NullPointerException if the specified collection is null 771 * @see #add(Object) 772 */ 773 public boolean addAll(Collection<? extends E> c) { 774 Object[] cs = c.toArray(); 775 if (cs.length == 0) 776 return false; 777 final ReentrantLock lock = this.lock; 778 lock.lock(); 779 try { 780 Object[] elements = getArray(); 781 int len = elements.length; 782 Object[] newElements = Arrays.copyOf(elements, len + cs.length); 783 System.arraycopy(cs, 0, newElements, len, cs.length); 784 setArray(newElements); 785 return true; 786 } finally { 787 lock.unlock(); 788 } 789 } 790 791 /** 792 * Inserts all of the elements in the specified collection into this 793 * list, starting at the specified position. Shifts the element 794 * currently at that position (if any) and any subsequent elements to 795 * the right (increases their indices). The new elements will appear 796 * in this list in the order that they are returned by the 797 * specified collection's iterator. 798 * 799 * @param index index at which to insert the first element 800 * from the specified collection 801 * @param c collection containing elements to be added to this list 802 * @return <tt>true</tt> if this list changed as a result of the call 803 * @throws IndexOutOfBoundsException {@inheritDoc} 804 * @throws NullPointerException if the specified collection is null 805 * @see #add(int,Object) 806 */ 807 public boolean addAll(int index, Collection<? extends E> c) { 808 Object[] cs = c.toArray(); 809 final ReentrantLock lock = this.lock; 810 lock.lock(); 811 try { 812 Object[] elements = getArray(); 813 int len = elements.length; 814 if (index > len || index < 0) 815 throw new IndexOutOfBoundsException("Index: "+index+ 816 ", Size: "+len); 817 if (cs.length == 0) 818 return false; 819 int numMoved = len - index; 820 Object[] newElements; 821 if (numMoved == 0) 822 newElements = Arrays.copyOf(elements, len + cs.length); 823 else { 824 newElements = new Object[len + cs.length]; 825 System.arraycopy(elements, 0, newElements, 0, index); 826 System.arraycopy(elements, index, 827 newElements, index + cs.length, 828 numMoved); 829 } 830 System.arraycopy(cs, 0, newElements, index, cs.length); 831 setArray(newElements); 832 return true; 833 } finally { 834 lock.unlock(); 835 } 836 } 837 838 /** 839 * Saves the state of the list to a stream (that is, serializes it). 840 * 841 * @serialData The length of the array backing the list is emitted 842 * (int), followed by all of its elements (each an Object) 843 * in the proper order. 844 * @param s the stream 845 */ 846 private void writeObject(java.io.ObjectOutputStream s) 847 throws java.io.IOException{ 848 849 s.defaultWriteObject(); 850 851 Object[] elements = getArray(); 852 // Write out array length 853 s.writeInt(elements.length); 854 855 // Write out all elements in the proper order. 856 for (Object element : elements) 857 s.writeObject(element); 858 } 859 860 /** 861 * Reconstitutes the list from a stream (that is, deserializes it). 862 * 863 * @param s the stream 864 */ 865 private void readObject(java.io.ObjectInputStream s) 866 throws java.io.IOException, ClassNotFoundException { 867 868 s.defaultReadObject(); 869 870 // bind to new lock 871 resetLock(); 872 873 // Read in array length and allocate array 874 int len = s.readInt(); 875 Object[] elements = new Object[len]; 876 877 // Read in all elements in the proper order. 878 for (int i = 0; i < len; i++) 879 elements[i] = s.readObject(); 880 setArray(elements); 881 } 882 883 /** 884 * Returns a string representation of this list. The string 885 * representation consists of the string representations of the list's 886 * elements in the order they are returned by its iterator, enclosed in 887 * square brackets (<tt>"[]"</tt>). Adjacent elements are separated by 888 * the characters <tt>", "</tt> (comma and space). Elements are 889 * converted to strings as by {@link String#valueOf(Object)}. 890 * 891 * @return a string representation of this list 892 */ 893 public String toString() { 894 return Arrays.toString(getArray()); 895 } 896 897 /** 898 * Compares the specified object with this list for equality. 899 * Returns {@code true} if the specified object is the same object 900 * as this object, or if it is also a {@link List} and the sequence 901 * of elements returned by an {@linkplain List#iterator() iterator} 902 * over the specified list is the same as the sequence returned by 903 * an iterator over this list. The two sequences are considered to 904 * be the same if they have the same length and corresponding 905 * elements at the same position in the sequence are <em>equal</em>. 906 * Two elements {@code e1} and {@code e2} are considered 907 * <em>equal</em> if {@code (e1==null ? e2==null : e1.equals(e2))}. 908 * 909 * @param o the object to be compared for equality with this list 910 * @return {@code true} if the specified object is equal to this list 911 */ 912 public boolean equals(Object o) { 913 if (o == this) 914 return true; 915 if (!(o instanceof List)) 916 return false; 917 918 List<?> list = (List<?>)(o); 919 Iterator<?> it = list.iterator(); 920 Object[] elements = getArray(); 921 int len = elements.length; 922 for (int i = 0; i < len; ++i) 923 if (!it.hasNext() || !eq(elements[i], it.next())) 924 return false; 925 if (it.hasNext()) 926 return false; 927 return true; 928 } 929 930 /** 931 * Returns the hash code value for this list. 932 * 933 * <p>This implementation uses the definition in {@link List#hashCode}. 934 * 935 * @return the hash code value for this list 936 */ 937 public int hashCode() { 938 int hashCode = 1; 939 Object[] elements = getArray(); 940 int len = elements.length; 941 for (int i = 0; i < len; ++i) { 942 Object obj = elements[i]; 943 hashCode = 31*hashCode + (obj==null ? 0 : obj.hashCode()); 944 } 945 return hashCode; 946 } 947 948 /** 949 * Returns an iterator over the elements in this list in proper sequence. 950 * 951 * <p>The returned iterator provides a snapshot of the state of the list 952 * when the iterator was constructed. No synchronization is needed while 953 * traversing the iterator. The iterator does <em>NOT</em> support the 954 * <tt>remove</tt> method. 955 * 956 * @return an iterator over the elements in this list in proper sequence 957 */ 958 public Iterator<E> iterator() { 959 return new COWIterator<E>(getArray(), 0); 960 } 961 962 /** 963 * {@inheritDoc} 964 * 965 * <p>The returned iterator provides a snapshot of the state of the list 966 * when the iterator was constructed. No synchronization is needed while 967 * traversing the iterator. The iterator does <em>NOT</em> support the 968 * <tt>remove</tt>, <tt>set</tt> or <tt>add</tt> methods. 969 */ 970 public ListIterator<E> listIterator() { 971 return new COWIterator<E>(getArray(), 0); 972 } 973 974 /** 975 * {@inheritDoc} 976 * 977 * <p>The returned iterator provides a snapshot of the state of the list 978 * when the iterator was constructed. No synchronization is needed while 979 * traversing the iterator. The iterator does <em>NOT</em> support the 980 * <tt>remove</tt>, <tt>set</tt> or <tt>add</tt> methods. 981 * 982 * @throws IndexOutOfBoundsException {@inheritDoc} 983 */ 984 public ListIterator<E> listIterator(final int index) { 985 Object[] elements = getArray(); 986 int len = elements.length; 987 if (index<0 || index>len) 988 throw new IndexOutOfBoundsException("Index: "+index); 989 990 return new COWIterator<E>(elements, index); 991 } 992 993 private static class COWIterator<E> implements ListIterator<E> { 994 /** Snapshot of the array */ 995 private final Object[] snapshot; 996 /** Index of element to be returned by subsequent call to next. */ 997 private int cursor; 998 999 private COWIterator(Object[] elements, int initialCursor) { 1000 cursor = initialCursor; 1001 snapshot = elements; 1002 } 1003 1004 public boolean hasNext() { 1005 return cursor < snapshot.length; 1006 } 1007 1008 public boolean hasPrevious() { 1009 return cursor > 0; 1010 } 1011 1012 @SuppressWarnings("unchecked") 1013 public E next() { 1014 if (! hasNext()) 1015 throw new NoSuchElementException(); 1016 return (E) snapshot[cursor++]; 1017 } 1018 1019 @SuppressWarnings("unchecked") 1020 public E previous() { 1021 if (! hasPrevious()) 1022 throw new NoSuchElementException(); 1023 return (E) snapshot[--cursor]; 1024 } 1025 1026 public int nextIndex() { 1027 return cursor; 1028 } 1029 1030 public int previousIndex() { 1031 return cursor-1; 1032 } 1033 1034 /** 1035 * Not supported. Always throws UnsupportedOperationException. 1036 * @throws UnsupportedOperationException always; <tt>remove</tt> 1037 * is not supported by this iterator. 1038 */ 1039 public void remove() { 1040 throw new UnsupportedOperationException(); 1041 } 1042 1043 /** 1044 * Not supported. Always throws UnsupportedOperationException. 1045 * @throws UnsupportedOperationException always; <tt>set</tt> 1046 * is not supported by this iterator. 1047 */ 1048 public void set(E e) { 1049 throw new UnsupportedOperationException(); 1050 } 1051 1052 /** 1053 * Not supported. Always throws UnsupportedOperationException. 1054 * @throws UnsupportedOperationException always; <tt>add</tt> 1055 * is not supported by this iterator. 1056 */ 1057 public void add(E e) { 1058 throw new UnsupportedOperationException(); 1059 } 1060 } 1061 1062 /** 1063 * Returns a view of the portion of this list between 1064 * <tt>fromIndex</tt>, inclusive, and <tt>toIndex</tt>, exclusive. 1065 * The returned list is backed by this list, so changes in the 1066 * returned list are reflected in this list. 1067 * 1068 * <p>The semantics of the list returned by this method become 1069 * undefined if the backing list (i.e., this list) is modified in 1070 * any way other than via the returned list. 1071 * 1072 * @param fromIndex low endpoint (inclusive) of the subList 1073 * @param toIndex high endpoint (exclusive) of the subList 1074 * @return a view of the specified range within this list 1075 * @throws IndexOutOfBoundsException {@inheritDoc} 1076 */ 1077 public List<E> subList(int fromIndex, int toIndex) { 1078 final ReentrantLock lock = this.lock; 1079 lock.lock(); 1080 try { 1081 Object[] elements = getArray(); 1082 int len = elements.length; 1083 if (fromIndex < 0 || toIndex > len || fromIndex > toIndex) 1084 throw new IndexOutOfBoundsException(); 1085 return new COWSubList<E>(this, fromIndex, toIndex); 1086 } finally { 1087 lock.unlock(); 1088 } 1089 } 1090 1091 /** 1092 * Sublist for CopyOnWriteArrayList. 1093 * This class extends AbstractList merely for convenience, to 1094 * avoid having to define addAll, etc. This doesn't hurt, but 1095 * is wasteful. This class does not need or use modCount 1096 * mechanics in AbstractList, but does need to check for 1097 * concurrent modification using similar mechanics. On each 1098 * operation, the array that we expect the backing list to use 1099 * is checked and updated. Since we do this for all of the 1100 * base operations invoked by those defined in AbstractList, 1101 * all is well. While inefficient, this is not worth 1102 * improving. The kinds of list operations inherited from 1103 * AbstractList are already so slow on COW sublists that 1104 * adding a bit more space/time doesn't seem even noticeable. 1105 */ 1106 private static class COWSubList<E> 1107 extends AbstractList<E> 1108 implements RandomAccess 1109 { 1110 private final CopyOnWriteArrayList<E> l; 1111 private final int offset; 1112 private int size; 1113 private Object[] expectedArray; 1114 1115 // only call this holding l's lock 1116 COWSubList(CopyOnWriteArrayList<E> list, 1117 int fromIndex, int toIndex) { 1118 l = list; 1119 expectedArray = l.getArray(); 1120 offset = fromIndex; 1121 size = toIndex - fromIndex; 1122 } 1123 1124 // only call this holding l's lock 1125 private void checkForComodification() { 1126 if (l.getArray() != expectedArray) 1127 throw new ConcurrentModificationException(); 1128 } 1129 1130 // only call this holding l's lock 1131 private void rangeCheck(int index) { 1132 if (index<0 || index>=size) 1133 throw new IndexOutOfBoundsException("Index: "+index+ 1134 ",Size: "+size); 1135 } 1136 1137 public E set(int index, E element) { 1138 final ReentrantLock lock = l.lock; 1139 lock.lock(); 1140 try { 1141 rangeCheck(index); 1142 checkForComodification(); 1143 E x = l.set(index+offset, element); 1144 expectedArray = l.getArray(); 1145 return x; 1146 } finally { 1147 lock.unlock(); 1148 } 1149 } 1150 1151 public E get(int index) { 1152 final ReentrantLock lock = l.lock; 1153 lock.lock(); 1154 try { 1155 rangeCheck(index); 1156 checkForComodification(); 1157 return l.get(index+offset); 1158 } finally { 1159 lock.unlock(); 1160 } 1161 } 1162 1163 public int size() { 1164 final ReentrantLock lock = l.lock; 1165 lock.lock(); 1166 try { 1167 checkForComodification(); 1168 return size; 1169 } finally { 1170 lock.unlock(); 1171 } 1172 } 1173 1174 public void add(int index, E element) { 1175 final ReentrantLock lock = l.lock; 1176 lock.lock(); 1177 try { 1178 checkForComodification(); 1179 if (index<0 || index>size) 1180 throw new IndexOutOfBoundsException(); 1181 l.add(index+offset, element); 1182 expectedArray = l.getArray(); 1183 size++; 1184 } finally { 1185 lock.unlock(); 1186 } 1187 } 1188 1189 public void clear() { 1190 final ReentrantLock lock = l.lock; 1191 lock.lock(); 1192 try { 1193 checkForComodification(); 1194 l.removeRange(offset, offset+size); 1195 expectedArray = l.getArray(); 1196 size = 0; 1197 } finally { 1198 lock.unlock(); 1199 } 1200 } 1201 1202 public E remove(int index) { 1203 final ReentrantLock lock = l.lock; 1204 lock.lock(); 1205 try { 1206 rangeCheck(index); 1207 checkForComodification(); 1208 E result = l.remove(index+offset); 1209 expectedArray = l.getArray(); 1210 size--; 1211 return result; 1212 } finally { 1213 lock.unlock(); 1214 } 1215 } 1216 1217 public boolean remove(Object o) { 1218 int index = indexOf(o); 1219 if (index == -1) 1220 return false; 1221 remove(index); 1222 return true; 1223 } 1224 1225 public Iterator<E> iterator() { 1226 final ReentrantLock lock = l.lock; 1227 lock.lock(); 1228 try { 1229 checkForComodification(); 1230 return new COWSubListIterator<E>(l, 0, offset, size); 1231 } finally { 1232 lock.unlock(); 1233 } 1234 } 1235 1236 public ListIterator<E> listIterator(final int index) { 1237 final ReentrantLock lock = l.lock; 1238 lock.lock(); 1239 try { 1240 checkForComodification(); 1241 if (index<0 || index>size) 1242 throw new IndexOutOfBoundsException("Index: "+index+ 1243 ", Size: "+size); 1244 return new COWSubListIterator<E>(l, index, offset, size); 1245 } finally { 1246 lock.unlock(); 1247 } 1248 } 1249 1250 public List<E> subList(int fromIndex, int toIndex) { 1251 final ReentrantLock lock = l.lock; 1252 lock.lock(); 1253 try { 1254 checkForComodification(); 1255 if (fromIndex<0 || toIndex>size) 1256 throw new IndexOutOfBoundsException(); 1257 return new COWSubList<E>(l, fromIndex + offset, 1258 toIndex + offset); 1259 } finally { 1260 lock.unlock(); 1261 } 1262 } 1263 1264 } 1265 1266 1267 private static class COWSubListIterator<E> implements ListIterator<E> { 1268 private final ListIterator<E> i; 1269 private final int index; 1270 private final int offset; 1271 private final int size; 1272 1273 COWSubListIterator(List<E> l, int index, int offset, 1274 int size) { 1275 this.index = index; 1276 this.offset = offset; 1277 this.size = size; 1278 i = l.listIterator(index+offset); 1279 } 1280 1281 public boolean hasNext() { 1282 return nextIndex() < size; 1283 } 1284 1285 public E next() { 1286 if (hasNext()) 1287 return i.next(); 1288 else 1289 throw new NoSuchElementException(); 1290 } 1291 1292 public boolean hasPrevious() { 1293 return previousIndex() >= 0; 1294 } 1295 1296 public E previous() { 1297 if (hasPrevious()) 1298 return i.previous(); 1299 else 1300 throw new NoSuchElementException(); 1301 } 1302 1303 public int nextIndex() { 1304 return i.nextIndex() - offset; 1305 } 1306 1307 public int previousIndex() { 1308 return i.previousIndex() - offset; 1309 } 1310 1311 public void remove() { 1312 throw new UnsupportedOperationException(); 1313 } 1314 1315 public void set(E e) { 1316 throw new UnsupportedOperationException(); 1317 } 1318 1319 public void add(E e) { 1320 throw new UnsupportedOperationException(); 1321 } 1322 } 1323 1324 // Support for resetting lock while deserializing 1325 private void resetLock() { 1326 UNSAFE.putObjectVolatile(this, lockOffset, new ReentrantLock()); 1327 } 1328 private static final sun.misc.Unsafe UNSAFE; 1329 private static final long lockOffset; 1330 static { 1331 try { 1332 UNSAFE = sun.misc.Unsafe.getUnsafe(); 1333 Class k = CopyOnWriteArrayList.class; 1334 lockOffset = UNSAFE.objectFieldOffset 1335 (k.getDeclaredField("lock")); 1336 } catch (Exception e) { 1337 throw new Error(e); 1338 } 1339 } 1340 }
下面我们从“创建,添加,删除,获取,遍历”这5个方面去分析CopyOnWriteArrayList的原理。
1. 创建
CopyOnWriteArrayList共3个构造函数。它们的源码如下:
public CopyOnWriteArrayList() { setArray(new Object[0]); } public CopyOnWriteArrayList(Collection<? extends E> c) { Object[] elements = c.toArray(); if (elements.getClass() != Object[].class) elements = Arrays.copyOf(elements, elements.length, Object[].class); setArray(elements); } public CopyOnWriteArrayList(E[] toCopyIn) { setArray(Arrays.copyOf(toCopyIn, toCopyIn.length, Object[].class)); }
说明:这3个构造函数都调用了setArray(),setArray()的源码如下:
private volatile transient Object[] array; final Object[] getArray() { return array; } final void setArray(Object[] a) { array = a; }
说明:setArray()的作用是给array赋值;其中,array是volatile transient Object[]类型,即array是“volatile数组”。
关于volatile关键字,我们知道“volatile能让变量变得可见”,即对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入。正在由于这种特性,每次更新了“volatile数组”之后,其它线程都能看到对它所做的更新。
关于transient关键字,它是在序列化中才起作用,transient变量不会被自动序列化。transient不是本文关注的重点,了解即可。
关于transient的更多内容,请参考:http://www.cnblogs.com/skywang12345/p/io_06.html
2. 添加
以add(E e)为例,来对“CopyOnWriteArrayList的添加操作”进行说明。下面是add(E e)的代码:
public boolean add(E e) { final ReentrantLock lock = this.lock; // 获取“锁” lock.lock(); try { // 获取原始”volatile数组“中的数据和数据长度。 Object[] elements = getArray(); int len = elements.length; // 新建一个数组newElements,并将原始数据拷贝到newElements中; // newElements数组的长度=“原始数组的长度”+1 Object[] newElements = Arrays.copyOf(elements, len + 1); // 将“新增加的元素”保存到newElements中。 newElements[len] = e; // 将newElements赋值给”volatile数组“。 setArray(newElements); return true; } finally { // 释放“锁” lock.unlock(); } }
说明:add(E e)的作用就是将数据e添加到”volatile数组“中。它的实现方式是,新建一个数组,接着将原始的”volatile数组“的数据拷贝到新数组中,然后将新增数据也添加到新数组中;最后,将新数组赋值给”volatile数组“。
在add(E e)中有两点需要关注。
第一,在”添加操作“开始前,获取独占锁(lock),若此时有需要线程要获取锁,则必须等待;在操作完毕后,释放独占锁(lock),此时其它线程才能获取锁。通过独占锁,来防止多线程同时修改数据!lock的定义如下:
transient final ReentrantLock lock = new ReentrantLock();
关于ReentrantLock的更多内容,可以参考:Java多线程系列--“JUC锁”02之 互斥锁ReentrantLock
第二,操作完毕时,会通过setArray()来更新”volatile数组“。而且,前面我们提过”即对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入“;这样,每次添加元素之后,其它线程都能看到新添加的元素。
3. 获取
以get(int index)为例,来对“CopyOnWriteArrayList的删除操作”进行说明。下面是get(int index)的代码:
public E get(int index) { return get(getArray(), index); } private E get(Object[] a, int index) { return (E) a[index]; }
说明:get(int index)的实现很简单,就是返回”volatile数组“中的第index个元素。
4. 删除
以remove(int index)为例,来对“CopyOnWriteArrayList的删除操作”进行说明。下面是remove(int index)的代码:
public E remove(int index) { final ReentrantLock lock = this.lock; // 获取“锁” lock.lock(); try { // 获取原始”volatile数组“中的数据和数据长度。 Object[] elements = getArray(); int len = elements.length; // 获取elements数组中的第index个数据。 E oldValue = get(elements, index); int numMoved = len - index - 1; // 如果被删除的是最后一个元素,则直接通过Arrays.copyOf()进行处理,而不需要新建数组。 // 否则,新建数组,然后将”volatile数组中被删除元素之外的其它元素“拷贝到新数组中;最后,将新数组赋值给”volatile数组“。 if (numMoved == 0) setArray(Arrays.copyOf(elements, len - 1)); else { Object[] newElements = new Object[len - 1]; System.arraycopy(elements, 0, newElements, 0, index); System.arraycopy(elements, index + 1, newElements, index, numMoved); setArray(newElements); } return oldValue; } finally { // 释放“锁” lock.unlock(); } }
说明:remove(int index)的作用就是将”volatile数组“中第index个元素删除。它的实现方式是,如果被删除的是最后一个元素,则直接通过Arrays.copyOf()进行处理,而不需要新建数组。否则,新建数组,然后将”volatile数组中被删除元素之外的其它元素“拷贝到新数组中;最后,将新数组赋值给”volatile数组“。
和add(E e)一样,remove(int index)也是”在操作之前,获取独占锁;操作完成之后,释放独占是“;并且”在操作完成时,会通过将数据更新到volatile数组中“。
5. 遍历
以iterator()为例,来对“CopyOnWriteArrayList的遍历操作”进行说明。下面是iterator()的代码:
public Iterator<E> iterator() { return new COWIterator<E>(getArray(), 0); }
说明:iterator()会返回COWIterator对象。
COWIterator实现额ListIterator接口,它的源码如下:
private static class COWIterator<E> implements ListIterator<E> { private final Object[] snapshot; private int cursor; private COWIterator(Object[] elements, int initialCursor) { cursor = initialCursor; snapshot = elements; } public boolean hasNext() { return cursor < snapshot.length; } public boolean hasPrevious() { return cursor > 0; } // 获取下一个元素 @SuppressWarnings("unchecked") public E next() { if (! hasNext()) throw new NoSuchElementException(); return (E) snapshot[cursor++]; } // 获取上一个元素 @SuppressWarnings("unchecked") public E previous() { if (! hasPrevious()) throw new NoSuchElementException(); return (E) snapshot[--cursor]; } public int nextIndex() { return cursor; } public int previousIndex() { return cursor-1; } public void remove() { throw new UnsupportedOperationException(); } public void set(E e) { throw new UnsupportedOperationException(); } public void add(E e) { throw new UnsupportedOperationException(); } }
说明:COWIterator不支持修改元素的操作。例如,对于remove(),set(),add()等操作,COWIterator都会抛出异常!
另外,需要提到的一点是,CopyOnWriteArrayList返回迭代器不会抛出ConcurrentModificationException异常,即它不是fail-fast机制的!
关于fail-fast机制,可以参考“Java 集合系列04之 fail-fast总结(通过ArrayList来说明fail-fast的原理、解决办法)”。
下面,我们通过一个例子去对比ArrayList和CopyOnWriteArrayList。
1 import java.util.*; 2 import java.util.concurrent.*; 3 4 /* 5 * CopyOnWriteArrayList是“线程安全”的动态数组,而ArrayList是非线程安全的。 6 * 7 * 下面是“多个线程同时操作并且遍历list”的示例 8 * (01) 当list是CopyOnWriteArrayList对象时,程序能正常运行。 9 * (02) 当list是ArrayList对象时,程序会产生ConcurrentModificationException异常。 10 * 11 * @author skywang 12 */ 13 public class CopyOnWriteArrayListTest1 { 14 15 // TODO: list是ArrayList对象时,程序会出错。 16 //private static List<String> list = new ArrayList<String>(); 17 private static List<String> list = new CopyOnWriteArrayList<String>(); 18 public static void main(String[] args) { 19 20 // 同时启动两个线程对list进行操作! 21 new MyThread("ta").start(); 22 new MyThread("tb").start(); 23 } 24 25 private static void printAll() { 26 String value = null; 27 Iterator iter = list.iterator(); 28 while(iter.hasNext()) { 29 value = (String)iter.next(); 30 System.out.print(value+", "); 31 } 32 System.out.println(); 33 } 34 35 private static class MyThread extends Thread { 36 MyThread(String name) { 37 super(name); 38 } 39 @Override 40 public void run() { 41 int i = 0; 42 while (i++ < 6) { 43 // “线程名” + "-" + "序号" 44 String val = Thread.currentThread().getName()+"-"+i; 45 list.add(val); 46 // 通过“Iterator”遍历List。 47 printAll(); 48 } 49 } 50 } 51 }
(某一次)运行结果:
ta-1, tb-1, ta-1, tb-1, ta-1, ta-1, tb-1, tb-1, tb-2, tb-2, ta-1, ta-2, tb-1, ta-1, tb-2, tb-1, ta-2, tb-2, tb-3, ta-2, ta-1, tb-3, tb-1, ta-3, tb-2, ta-1, ta-2, tb-1, tb-3, tb-2, ta-3, ta-2, tb-4, tb-3, ta-1, ta-3, tb-1, tb-4, tb-2, ta-4, ta-2, ta-1, tb-3, tb-1, ta-3, tb-2, tb-4, ta-2, ta-4, tb-3, tb-5, ta-3, ta-1, tb-4, tb-1, ta-4, tb-2, tb-5, ta-2, ta-5, tb-3, ta-1, ta-3, tb-1, tb-4, tb-2, ta-4, ta-2, tb-5, tb-3, ta-5, ta-3, tb-6, tb-4, ta-4, tb-5, ta-5, tb-6, ta-6,
结果说明:如果将源码中的list改成ArrayList对象时,程序会产生ConcurrentModificationException异常。
更多内容