- 长尾形分布论文速览三十篇【60-89】
木木阳
Long-tailed人工智能
长尾形分布速览(60-89)这些研究展示了LLMs在长尾数据分布、持续学习、异常检测、联邦学习、对比学习、知识图谱、推荐系统、多目标跟踪、标签修复、对象检测、医疗生物医学以及其他应用中的广泛应用。通过优化和创新,LLMs在这些领域展现了卓越的性能,并为解决长尾问题提供了有效的工具和方法。1.长尾持续学习与对抗学习长尾持续学习(Paper60):通过优化器状态重用来减少遗忘,提高在长尾任务中的持续学
- 工业缺陷检测深度学习方法综述
2301_80355452
深度学习人工智能
其被广泛地应用于无人质检、智能巡检、质量控制等各种生产与运维场景中.一.工业缺陷检测的背景与特点工业缺陷检测面临着诸多难点:缺陷样本匮乏、缺陷的可视性低、形状不规则、类型未知等,直接使用异常检测方法难以满足工业缺陷检测的任务需求.二.介绍工业缺陷检测问题的定义,分析研究难点与挑战异常:点异常、上下文异常和集群异常。点异常:又称为离群值(outliers)[9],描述数值上偏离正常样本的独立数据。与
- 记录一个异常检测库
STO检测王
深度学习
https://github.com/openvinotoolkit/anomalib/tree/main关于一个异常检测库,包括最先进的算法和功能,如实验管理,超参数优化和边缘推理。
- AIOps 简介与实践初探 - 智能指标异常检测
weixin_42587823
aiopsaiops
AIOps简介与实践初探-智能指标异常检测问题的根源:静态阈值的“告警疲劳”作为SRE,我们每天都在与告警作斗争。而绝大多数告警都来源于静态阈值的设定,例如:CPU使用率>80%磁盘空间500ms这种方式简单直接,但在复杂系统中,它的弊端也日益凸显:告警疲劳(AlertFatigue):为了“宁可错杀,不可放过”,阈值往往设得偏低。结果,在业务高峰期,系统正常地繁忙,告警却响个不停。久而久之,大家
- Syslog 日志分析与异常检测技巧
运维知识
系统日志包含有助于分析网络设备整体运行状况的重要信息。然而,理解并从中提取有效数据往往颇具挑战。本文将详解从基础命令行工具到专业日志管理软件的全流程分析技巧,助你高效挖掘Syslog日志价值。Grep工具:精准日志文本搜索Grep是一个简单的搜索工具,在所有Linux发行版中都是内置的,也可用于Windows和Mac操作系统。你可以在命令行界面(CLI)中执行简单的文本查询,以提取所需的日志。语法
- 云原生SLO与AIOps的完美结合:智能运维新趋势
AI云原生与云计算技术学院
云原生ai
云原生SLO与AIOps的完美结合:智能运维新趋势关键词:云原生、SLO、AIOps、智能运维、服务等级目标、自动化运维、机器学习摘要:本文深入探讨云原生环境下服务等级目标(SLO)与智能运维(AIOps)的融合实践。通过解析SLO的核心原理与AIOps的技术架构,揭示两者在指标定义、异常检测、自动化修复等环节的协同机制。结合具体算法实现、数学模型分析与项目实战案例,展示如何通过数据驱动的智能运维
- 物联网与AI驱动的智能宿舍管理解决方案
本文还有配套的精品资源,点击获取简介:智能宿舍管理系统通过物联网、云计算和人工智能技术相结合,提高宿舍管理效率和学生住宿体验。该系统集成了智能门锁、传感器、能源管理系统等硬件设备,并与软件平台结合实现远程监控、自动化控制和数据分析。它还包含了实时监控、数据处理、远程操作、智能分析、异常检测和用户画像等功能,以确保高效管理、安全性和个性化服务。此外,系统设计注重加密通信、访问控制和隐私保护,以保障数
- 机器学习专栏(13):数据探索三重奏——从地理热力图到特征工程的财富密码
Sonal_Lynn
人工智能专题机器学习python人工智能深度学习算法开发语言
目录导言:当数据点连成黄金海岸线一、地理可视化:数据中的加州淘金热1.1基础地理散点图1.2高密度区域透视术二、相关性解密:数字背后的财富公式2.1皮尔逊相关系数矩阵2.2非线性关系发现术三、特征炼金术:创造新的财富密码3.1特征组合公式库3.2相关性进化史四、异常数据猎手:揪出数据中的"叛徒"4.1价格天花板检测4.2时空异常检测五、工业级探索工具箱5.1自动化数据透视5.2探索流程checkl
- 网络安全项目实战:Python在网络安全中的应用
kleo3270
本文还有配套的精品资源,点击获取简介:网络安全项目工程是一个用Python编写的程序,重点在于实现特定的安全功能或进行网络安全性分析。本项目详细解析了如何使用Python执行特定命令以实现网络安全性,涵盖了网络编程、加密、数据分析、Web安全、认证授权、异常检测等技术。同时,还涉及到网络扫描、渗透测试以及入侵检测系统,使用Python库进行各种网络安全操作。1.Python在网络安全中的应用概述网
- 探秘 Drain3:一款高效日志异常检测神器
尚舰舸Elsie
探秘Drain3:一款高效日志异常检测神器去发现同类优质开源项目:https://gitcode.com/项目简介是一个基于深度学习的日志异常检测系统,由LogPAI团队开发并开源。它旨在帮助运维人员和数据科学家快速发现系统日志中的异常行为,从而及时预测和处理潜在的问题,提升系统的稳定性和安全性。技术分析Drain3的核心技术是利用一维卷积神经网络(1DConvolutionalNeuralNet
- 机器学习算法实战系列:异常检测全攻略——从统计方法到深度学习的异常发现技术
全息架构师
AI行业应用实战先锋机器学习算法深度学习
机器学习算法实战系列:异常检测全攻略——从统计方法到深度学习的异常发现技术引言“数据中的异常往往蕴含着最有价值的信息!从金融欺诈检测到工业设备故障预警,从网络安全到医疗诊断,异常检测技术正在守护着各个领域的安全底线。”异常检测是机器学习中极具挑战性又极具价值的领域,它旨在识别数据中与大多数实例显著不同的异常模式。本文将系统讲解异常检测的核心算法,从传统的统计方法到前沿的深度学习技术,通过金融反欺诈
- 机器学习在后端告警系统中的应用:异常检测新思路
后端开发笔记
机器学习机器人人工智能ai
机器学习在后端告警系统中的应用:异常检测新思路关键词:后端告警系统、异常检测、机器学习、时序数据、误报率优化摘要:传统后端告警系统依赖固定阈值或简单规则,常因“大促误报”“节假日抽风”等问题被运维工程师吐槽。本文将带您探索如何用机器学习给告警系统装上“智能大脑”,从“机械哨兵”升级为“动态侦探”。我们将通过生活案例、算法原理解析、实战代码演示,一步步揭开机器学习在异常检测中的应用奥秘,帮您理解如何
- 工业物联网(IIoT)高保真架构案例
深山技术宅
物联网物联网架构数据库
以下是为您精心设计的工业物联网(IIoT)高保真架构案例,涵盖底层设备接入、边缘计算、云边协同及安全体系,全部基于真实工业场景提炼,附带技术决策要点和雷区警示:案例一:钢铁厂轧机预测性维护系统架构拓扑云端边缘层设备层ProfinetModbusTCPS7-300MQTTIIoT平台时序数据库数字孪生体维护工单系统边缘计算节点实时计算引擎FFT频谱分析温度场重建异常检测模型边缘网关轧机振动传感器红外
- Task01. 时序数据与 PyPOTS 介绍
三分梦~
python机器学习时序数据库数据挖掘
Task01.时序数据与PyPOTS介绍Task01.时序数据与PyPOTS介绍1.时间序列数据介绍️举例:与i.i.d数据的区别示例:1.1时间序列数据的类型1.2常见时间序列数据示例1.3时间序列研究与应用方向主要任务:1.预测(Forecasting)2.分类(Classification)3.聚类(Clustering)4.异常检测(AnomalyDetection)5.时间序列生成(Ge
- 人工智能混合编程实践:C++调用封装好的DLL进行图像超分重建(v2.0)
FriendshipT
人工智能混合编程实践人工智能c++开发语言超分辨率重建图像处理
人工智能混合编程实践:C++调用封装好的DLL进行图像超分重建(v2.0)前言相关介绍C++简介ONNX简介ONNXRuntime简介**核心特点**DLL简介**核心特点****创建与使用****应用场景****优点与挑战**图像异常检测简介应用场景前提条件实验环境项目结构C++调用封装好的DLL进行图像超分重建C++调用dll的相关代码framework.hpch.hcxx_infer_sr.
- 机器学习笔记【Week9】
kuiini
人工智能机器学习人工智能
一、异常检测问题动机在现实中,我们经常会遇到“异常检测”的任务:识别罕见、异常、不符合正常模式的数据点。例:工业设备故障检测,银行欺诈识别,异常流量检测等。核心特点:异常样本稀少,难以用监督学习训练模型。二、高斯分布建立算法前,需要假设每个特征满足高斯(正态)分布。在单一特征xjx_jxj上:p(xj;μj,σj2)=12π σjexp(−(xj−μj)22σj2)p(x_j;\mu_j,\si
- Web 架构之AI赋能:智能流量调度与异常检测
懂搬砖
web架构原力计划前端架构
文章目录摘要思维导图正文智能流量调度传统流量调度问题AI赋能流量调度原理AI流量调度实现方法应用案例异常检测传统异常检测局限AI异常检测原理AI异常检测实现方法应用案例总结摘要在当今数字化时代,Web架构面临着高并发流量和安全威胁的双重挑战。传统的流量调度和异常检测方法已难以满足日益复杂的业务需求。本文探讨了如何将人工智能(AI)技术应用于Web架构中的流量调度和异常检测,介绍了相关的技术原理、实
- 基于YOLOv8的人脸识别与跟踪系统设计与实现
YOLO实战营
YOLOui目标检测目标跟踪深度学习
1.项目背景与意义随着智能安防、智能监控、人机交互等领域的快速发展,人脸识别与跟踪技术受到了广泛关注。它不仅在安防监控系统中用于身份认证与异常检测,也在智能门禁、自动考勤和营销系统中发挥重要作用。传统的人脸检测多依赖Haar级联或基于特征的检测方法,准确率和鲁棒性有限。深度学习方法,尤其是YOLOv8等先进目标检测框架,实现了实时且高准确度的人脸检测。同时,结合人脸识别(身份验证)和多目标跟踪,可
- 智能数据桥梁:Java Excel适配器对接数据库表的AI赋能实践(支持主从表)
领码科技
低代码技能篇人工智能excelJava适配器Excel数据导入数据库转换主从表AI数据清洗
摘要随着企业数据量爆发式增长,如何高效、准确地将Excel数据导入数据库成为关键需求。本文聚焦“适配器模式”在Excel与Java数据库交互中的核心作用,结合AI技术实现智能数据识别、自动清洗与异常检测,打造灵活、高性能的导入解决方案。特别地,本文支持复杂业务中的主从表(主表与明细表)数据导入,实现先处理主表获取主键,再动态映射并插入明细表数据,事务管理确保多表数据一致性,错误处理覆盖跨表场景,提
- 西电【网络与协议安全】课程期末复习的一些可用情报
框架主义者
网络安全
来自2022年春的古早遗留档案,有人需要这个,我就发一下吧。网络安全法律法规大作业字数不少于3000字:(1)论文首页,标明论文题目、姓名、学号、电话和Email(2)论文格式:小四号字体,1.25倍行距复习重点试卷构成1020304010选择20填空(可有意思了)8简答2综合总体比较简单,综合题非常简单???不要看PPT,要看书给一个很简单的场景,协议,功能公钥、MAC、混合应用异常检测不考第一
- 从 “被动拦截” 到 “智能预判”:下一代防火墙的五大核心技术突破
柏睿网络
人工智能
传统防火墙如同仅能按"剧本"执行的机械门卫,面对复杂多变的网络威胁时,常因规则滞后、检测粗放而陷入被动。下一代防火墙(NGFW)通过五大核心技术突破,构建起以"智能预判"为核心的主动防御体系,实现从"事后响应"到"事前阻断"的范式革命。一、AI驱动的威胁检测引擎:从规则匹配到行为建模技术突破机器学习驱动的异常检测抛弃传统的"特征码匹配"模式,采用无监督学习算法(如孤立森林、VAE变分自编码器)构建
- 构筑多元视角下的智能安全能力提升之道
芯盾时代
安全网络人工智能网络安全
面对日益专业化、隐蔽化的网络攻击,传统安全防御能力在实时性、精准性和可持续性层面遭遇严峻挑战。人工智能技术通过其强大的数据解析力、模式识别力与决策自动化能力,正在重塑网络安全能力的价值,推动安全体系完成从“被动响应”到“主动免疫”的根本性变革。在威胁检测方面,人工智能通过无监督学习构建动态基线模型,实时解析网络流量、终端行为及用户操作日志,突破传统特征库对已知威胁的依赖。基于深度神经网络的异常检测
- DeepSeek引爆AI工业应用之AI赋能AMHS
爱吃青菜的大力水手
人工智能自动化持续部署开源语言模型
中国半导体AMHS关键系统解析及AI赋能本文深入探讨了中国半导体工厂中AMHS(自动物料搬运系统)的关键技术架构,包括MCS/TCS/VCS控制系统、OHT小车、无线供电轨道等核心模块,并详细阐述了如何利用人工智能(如强化学习、神经网络及DeepSeek大语言模型)赋能AMHS,实现智能调度、预测性维护、异常检测和自然语言交互。文章中还提供了软件架构设计、代码示例和数学模型的介绍,旨在为行业内技术
- 聚类算法性能对比:K-means vs DBSCAN vs 层次聚类
AI智能探索者
算法聚类kmeansai
聚类算法性能对比:K-meansvsDBSCANvs层次聚类关键词:聚类算法、K-means、DBSCAN、层次聚类、性能对比、机器学习、无监督学习摘要:聚类是无监督学习的核心任务之一,广泛应用于用户分群、图像分割、异常检测等场景。本文将用“分水果”“找朋友”“建家谱”等生活化比喻,从原理、优缺点到实战场景,一步一步对比K-means、DBSCAN、层次聚类三种主流算法。无论你是刚入门的机器学习爱
- 聚类算法参数调优指南:如何获得最佳分组效果
AIGC应用创新大全
算法聚类数据挖掘ai
聚类算法参数调优指南:如何获得最佳分组效果关键词:聚类算法、参数调优、K-means、DBSCAN、轮廓系数、Calinski-Harabasz、高维数据摘要:聚类算法是无监督学习的核心工具,广泛用于用户分群、图像分割、异常检测等场景。但很多人发现:即使选对了算法,参数设置不当也会导致“分组混乱”或“簇无意义”。本文将用“分糖果”“找人群”等生活案例,结合Python代码实战,从底层逻辑到调优技巧
- 扫地机产品异物进入吸尘口堵塞异常检测方案
悟空胆好小
清洁服务机器人人工智能机器人嵌入式硬件
扫地机产品异物进入吸尘口堵塞异常的检测方案文章目录扫地机产品异物进入吸尘口堵塞异常的检测方案一.背景二.石头的音频异常检测的方案2.1音频检测触发点2.1.1时间周期2.1.2根据清洁机器人清扫模式或清扫区域污渍类型,即当清扫模式为深度清洁模式或清扫区域污渍类型为重度污渍级别时,确定触发声音检测异物模式。2.1.33、根据检测到的主刷工作电流值与预置的主刷电流阈值的比较结果,当主刷工作电流值大于主
- 日志异常检测初探
Mark_Aussie
AIOps机器学习
常用日志异常识别算法,LogClass算法是基于有数据标签的场景(即哪些日志是正常的,哪些日志是异常的);DeepLog是无监督的方法,不需要提前准备数据标签;日志的根因定位算法FOCUS,是基于系统日志快速分析是什么条件造成了响应时延增加;SyslogDigest是专门针对网络设备的syslog进行分析的算法,可从原始syslog产生有实际含义的、可按优先级排序的网络事件;FT-tree是一种通
- InfluxDB 高级分析实战:预测、技术指标与异常检测全指南
梦想画家
数据分析工程InfluxDB数据分析
InfluxDB不仅是强大的时序数据存储引擎,更是企业构建智能分析系统的核心平台。本文全面解析如何利用InfluxDB内置函数与Python生态实现:✅预测分析:从简单季节性预测(HOLT_WINTERS)到复杂模型集成(Prophet/LSTM)✅技术指标计算:直接调用内置函数(EMA、KAMA、RSI)实现实时监控✅异常检测:基于统计规则(阈值监控)与机器学习模型(IsolationFores
- AI情感陪伴在医疗领域的核心应用潜力
晓晓不觉早
人工智能语音识别
一、精准情绪监测与干预多模态情感识别系统通过整合语音语调分析(降调与语速异常检测抑郁倾向)、微表情捕捉(面部肌肉运动追踪焦虑状态)、生理指标监测(心率变异幅度反映应激水平)等技术,构建动态情绪评估模型。在老年痴呆症护理中,该系统能实时预警患者的躁动倾向,自动触发个性化音乐疗法。心理危机早期预警基于文本语义分析模型,可识别社交媒体或医疗咨询中隐藏的自杀意念关键词组合(如"解脱""永远消失"等),预警
- 【机器学习】揭秘异常检测:轻松揪出数据中的“害群之马” (含Scikit-learn实战)
吴师兄大模型
0基础实现机器学习入门到精通机器学习scikit-learn人工智能数据异常检测深度学习pytorchLLM
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>