- 班车服务系统扩展到多场景(穿梭车、周转车)的升级过程中,遗传算法和蚁群算法的实现示例
Alex艾力的IT数字空间
算法动态规划javaspringboot功能测试测试覆盖率
班车服务系统扩展到多场景(如办公场地穿梭车、周转车)的升级过程中,遗传算法(GA)和蚁群算法(ACO)实现协同优化,代码示例如下:一、算法选择与场景适配1.遗传算法:全局调度优化适用场景:多车辆类型(班车、穿梭车、周转车)的协同调度、时间窗约束(如会议通勤时间)、资源分配(如车辆容量限制)。核心逻辑:通过染色体编码表示调度方案,利用选择、交叉、变异操作生成新解,逐步逼近最优调度序列。Java代码示
- 表观遗传风暴:深圳AI-BioFab终极防御战全纪实
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站⚡《表观遗传风暴:深圳AI-BioFab终极防御战全纪实》副标题:抗癌疫苗灌装倒计时90秒惊现组蛋白叛乱,中国启动虫洞计算化解文明级生物危机2025年7月2日14:26光明科学城急电当第184支抗癌疫苗注入冷链罐的瞬间,B3层突爆刺眼蓝光!培养舱内数千细胞染色体疯狂解旋,量子钟在14:26:03
- 【杂谈】- AlphaGenome:解锁基因组奥秘的强大AI引擎
视觉与物联智能
杂谈人工智能AI深度学习神经网络AGIAIGC
AlphaGenome:解锁基因组奥秘的强大AI引擎文章目录AlphaGenome:解锁基因组奥秘的强大AI引擎1、解读遗传指令的挑战2、理解AlphaGenome3、突破背后的科学4、性能基准5、实际应用和研究影响6、当前的局限性和未来方向7、普及基因组AI8、展望未来9、总结人类DNA中蕴含着约30亿个遗传密码,构成了生命的神秘蓝图。然而,我们对于这本庞大“指令手册”中细胞运作方式的认知,却仅
- 遗传算法Matlab代码实现及算法函数封装
文章目录前言一、遗传算法介绍二、遗传算法算子1.种群初始化1.1二进制数编码1.2浮点数编码1.3小结2.选择算子3.交叉算子4.变异算子5.小结三、算法实例1.例一2.例二3.例三4.小结四、算法函数封装1.示例一2.示例二3.示例三五、参考文献前言遗传算法(GA)作为求解单目标优化问题的有效算法,自提出以来,便被广泛采用。该算法主要是模仿达尔文进化论,通过种群不断的进行自然选择、繁衍交叉变异,
- 遗传算法:原理、实现与应用的全面解析
2后啥样
算法
摘要本文深入探讨遗传算法这一模拟自然进化过程的计算模型,详细阐述其核心原理、关键步骤、实现方式及在多领域的应用。通过分析遗传算法与传统优化算法的差异,结合实际案例展示其在解决复杂优化问题上的优势,并探讨算法的改进策略与未来发展趋势,旨在为相关领域研究和实践提供全面理论支撑与实践指导,助力解决复杂优化难题,推动技术创新与发展。一、引言在现代科学与工程领域,诸多问题可归结为优化问题,如资源分配、路径规
- 遗传算法的原理与实现示例
遗传算法是一种受生物进化理论启发的随机优化算法,其核心思想是模拟自然界中“物竞天择、适者生存”的进化过程,通过对候选解的迭代优化,找到问题的最优解。一、核心思想 遗传算法将优化问题的候选解视为生物群体中的“个体”,每个个体的“基因”对应解的参数。通过模拟生物进化中的选择、交叉、变异等过程,让群体中“适应性强”(即更接近最优解)的个体保留并繁衍,“适应性弱”的个体被淘汰,最终使群体逐渐逼近最优
- 结构力学优化算法:多目标优化:遗传算法与结构优化_2024-08-08_19-41-25.Tex
chenjj4003
材料力学2算法javascript前端人工智能线性代数
结构力学优化算法:多目标优化:遗传算法与结构优化绪论结构优化的重要性在工程设计中,结构优化扮演着至关重要的角色。它旨在通过最小化成本、重量或应力等目标,同时确保结构的强度、刚度和稳定性满足设计要求,来提高结构的性能和效率。结构优化可以帮助工程师在设计初期就避免潜在的结构问题,减少材料浪费,降低生产成本,同时提升产品的竞争力。多目标优化的概念多目标优化是指在优化过程中同时考虑多个目标函数的优化问题。
- Python实例题:基于遗传算法的旅行商问题求解
狐凄
实例python开发语言
目录Python实例题题目要求:解题思路:代码实现:Python实例题题目基于遗传算法的旅行商问题求解要求:使用遗传算法解决旅行商问题(TSP)。支持以下功能:随机生成城市坐标或导入预定义城市实现遗传算法的基本操作(选择、交叉、变异)可视化进化过程和最终路径统计进化过程中的适应度变化允许用户调整遗传算法参数(种群大小、迭代次数、交叉率、变异率等)。解题思路:用列表表示城市访问顺序作为染色体。使用欧
- AI助力基因遗传疾病检测:现状与未来
t0_54program
大数据与人工智能人工智能个人开发
在现代医学领域,与基因紊乱相关疾病的早期检测至关重要。像肺癌,早期诊断的患者5年生存率可达57%,而四期癌症患者生存率仅3%。阿尔茨海默病的早期检测,能让患者改变生活方式、参与临床试验并提前治疗脑部退化症状,有效延长生命。尽管基因检测对评估晚发性阿尔茨海默病的可能性有帮助,对早发性阿尔茨海默病也有指示作用,但其检测技术仍有待完善。目前,仅基于生物学研究的疾病检测技术多样,虽对特定病例精确,但通常需
- 蚁群算法及其改进——全局路径规划
~夕上林~
优化算法算法
文章目录蚁群算法运行机制公式原理转移概率信息素更新步骤改进精英蚂蚁策略遗传算法+ACO程序参考文献蚁群算法蚁群算法(AntColonyOptimization,ACO)是由意大利学者MarcoDorigo于1992年提出的一种群智能优化算法,其核心思想源于对蚂蚁群体觅食行为的仿生学模拟。通过模拟蚂蚁群体在觅食过程中通过信息素进行间接通信的行为机制,利用正反馈原理动态调整路径选择策略,最终在复杂搜索
- 【读代码】深入解析Ragas:RAG应用效果评估最好的工具
kakaZhui
大模型实践之知识库RAGLLMAgent人工智能AIGCRAGRagas
一、基本介绍Ragas是由ExplodingGradients团队开发的专业LLM应用评估框架,通过自动化测试和量化指标帮助开发者构建可靠的AI系统。项目采用模块化架构设计,核心功能包括:#典型架构模块├──metrics#50+评估指标实现├──testset#测试集生成系统├──embeddings#多模态嵌入支持├──integrations#主流框架集成├──optimizers#遗传算法
- MATLAB 优化类算法的改进方向探索及仿真对比分析
鱼弦
人工智能时代算法matlab人工智能
MATLAB优化类算法的改进方向探索及仿真对比分析一、概述优化算法是解决复杂问题的有效工具,在工程设计、机器学习、数据分析等领域有着广泛应用。本文将探讨MATLAB中优化类算法的改进方向,并进行仿真对比分析,包括遗传算法、粒子群算法、模拟退火算法等。二、优化算法简介1.遗传算法(GA)原理:模拟生物进化过程,通过选择、交叉、变异等操作寻找最优解。优点:全局搜索能力强:能够跳出局部最优解。并行计算能
- 【图像处理入门】8. 数学基础与优化:线性代数、概率与算法调优实战
小米玄戒Andrew
图像处理:从入门到专家图像处理线性代数算法python计算机视觉概率论算法调优
摘要图像处理的核心离不开数学工具的支撑。本文将深入解析线性代数、概率论在图像领域的应用,包括矩阵变换与图像几何操作的关系、噪声模型的数学描述,以及遗传算法、粒子群优化等智能算法在参数调优中的实践。通过理论结合代码案例,帮助读者掌握从数学原理到工程优化的完整链路。一、线性代数:图像变换的数学基石1.矩阵运算与图像几何变换在图像处理入门3中,我们通过仿射变换矩阵实现图像平移、旋转与缩放。其本质是线性代
- 【BP数据预测】基于matlab遗传算法优化BP神经网络GA-BP数据预测【含Matlab源码 1376期】
海神之光
matlab
欢迎来到海神之光博客之家✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;个人主页:海神之光代码获取方式:海神之光Matlab王者学习之路—代码获取方式(1)完整代码,已上传资源;需要的,在博主主页搜期号直接付费下载或者订阅本专栏赠送此代
- 遗传算法 & 路径规划(没写完,,)
chuanauc
路径规划
看的这个前半部分理解思想名词;【智能算法】大白话讲解遗传算法,10分钟带你看懂遗传算法,基于遗传算法的稀疏线阵优化实例_哔哩哔哩_bilibili之后看要看的:手把手教遗传算法解配送问题(1)-代码概述_哔哩哔哩_bilibili一、涉及的专有名词及含义二、常见的算法1.算法原理2.现有实现模型参数3.算法自己实现1.遗传算法:
- 【Python打卡Day12】启发式算法 @浙大疏锦行
可能是猫猫人
Python打卡训练营内容启发式算法算法
今天学习遗传算法,在以后的论文写作中可以水一节,胆子大的人才可以水一章这些算法仅作为你的了解,不需要开始学习,如果以后需要在论文中用到,在针对性的了解下处理逻辑。下面介绍这几种常见的优化算法遗传算法粒子群优化模拟退火##1.数据处理+划分训练和测试importpandasaspdimportpandasaspd#用于数据处理和分析,可处理表格数据。importnumpyasnp#用于数值计算,提供
- 动态多目标进化算法:基于迁移学习的动态多目标遗传算法Tr-NSGA-II求解CEC2015,提供完整MATLAB代码
IT猿手
动态多目标优化MATLAB动态多目标算法迁移学习matlab动态多目标进化算法动态多目标优化算法人工智能机器学习
一、Tr-NSGA-II介绍基于迁移学习的动态多目标遗传算法(TransferLearningbasedDynamicMultiobjectivenon-dominatedsortinggeneticalgorithmII,Tr-NSGA-II)是一种将迁移学习与非支配排序遗传算法(NSGA-II)相结合的优化算法,用于解决动态多目标优化问题。工作原理迁移学习的应用:Tr-NSGA-II利用迁移学
- matlab利用遗传算法对天线阵列进行优化
rit8432499
算法matlab
使用matlab进行利用遗传算法对天线阵列进行优化best.m,355calfitvalue.m,274calobjvalue.m,360crossover_multiv.m,1194decode_multiv.m,409griewangk.m,841initpop.m,436mainprog.m,2080mutation_multiv.m,1002selection.m,1174sll.m,10
- 50行matlab算法,一个用matlab实现的50行的实数染色体遗传算法程序 - 计算模拟 - 小木虫 - 学术 科研 互动社区...
kotlit
50行matlab算法
【本文属作者原创,但已发表于科学网(链接地址:http://blog.sciencenet.cn/blog-3102863-1029280.html),现稍作格式上的修该后转载,并发金币祝大家新年快乐!】1.引言遗传算法(geneticalgorithms)是一种很有意思最优化方法,常用于解决一些传统方法力所不及的多变量最优化问题。这种方法很通用,即用同样的思想可以解决很多不同的问题。只要你能对问
- 基于遗传算法的PID控制器调谐研究(Matlab代码实现)
宇哥预测优化代码学习
matlab
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述一、引言二、遗传算法简介三、基于遗传算法的PID控制器参数整定四、实验结果与分析五、结论与展望2运行结果3参考文献4Matlab代码实现1概述传统的PID控制器参数整定方法包括经验凑试法、对数频率特性法、临界比例度法。经验凑试法是工程人员在长期实践中总
- 【PID优化】基于遗传算法的PID控制器调谐研究附Matlab代码
Matlab大师兄
matlab算法开发语言
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍比例-积分-微分(PID)控制器作为工业控制领域最广泛应用的一种反馈控制算法,其参数整定对于控制系统的性能至关重要。然而,传统的PID参数整定方法往往依赖于经验或试错,难以满
- 生物启发算法:AI人工智能不可或缺的技术法宝
AI智能探索者
AIAgent智能体开发实战算法人工智能ai
生物启发算法:AI人工智能不可或缺的技术法宝关键词:生物启发算法、遗传算法、粒子群优化、蚁群算法、AI优化摘要:本文将带你走进“生物启发算法”的奇妙世界——这是一类从自然界生物智慧中“偷师”的AI技术法宝。我们将通过蚂蚁找路、鸟群觅食、物种进化等生活故事,用小学生都能听懂的语言,拆解遗传算法、粒子群优化、蚁群算法等核心技术的底层逻辑;结合Python代码实战和真实AI场景(如机器人路径规划、神经网
- 遗传算法的C语言实现
alasnot
算法
//目标函数:y=(x1-1)^2+(x2-2)^2;#include#include#include#include#definedelta3#defineT200//进化代数#defineN200//群体个数#defineINT4//整数基因长度#defineFLOAT0//小数基因长度#defineMUTATE0.005//基因突变率intt=0;//代数计数intgene[N][(INT+
- 遗传算法详解:从自然选择到代码实战
weixin_47233946
算法算法
##引言遗传算法(GeneticAlgorithm,GA)是一类受生物进化论启发的优化算法,自1960年代由JohnHolland提出以来,已广泛应用于工程优化、金融建模、机器学习等领域。本文将深入剖析遗传算法的核心原理、关键组件和典型应用,并通过代码案例展现其具体实现。##1.算法起源与核心思想###1.1生物进化启示遗传算法模拟自然界三种关键机制:-**自然选择**:适者生存的筛选机制-**遗
- 【太阳能学报EI复现】基于粒子群优化算法的风-水电联合优化运行分析(Matlab代码实现)
wlz249
算法matlabjava
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述基于粒子群优化算法的风-水电联合优化运行分析研究一、粒子群优化算法(PSO)的基本原理与特点二、风-水电联合运行的定义与挑战1.互补性分析2.关键挑战三、基于PSO的风-水电联合优化模型2.PSO的改进策略四、PSO与遗传算法的对比研究五、典型案例研究六、未来研
- 【ML】用遗传规划进行因子挖掘
量化交易曾小健(金融号)
量化金融javascript开发语言ecmascript
【ML】用遗传规划进行因子挖掘原创Yud.2AMquant2024-04-0207:30广东本文使用deappkg进行基于遗传算法的因子挖掘。并对代码进行部分修改。自定义了多个算子如下,同样包括时间序列相关的算子:winsorize(x)kurtdev(df,window)if_then_else(condition,out1,out2)ts_zscore(df,window)ts_sum(df,
- [蓝桥杯]DNA比对
鑫鑫向栄
蓝桥杯算法深度优先c++蓝桥杯代理模式
DNA比对题目描述脱氧核糖核酸即常说的DNA,是一类带有遗传信息的生物大分子。它由4种主要的脱氧核苷酸(dAMP、dGMP、dCMT和dTMP)通过磷酸二酯键连接而成。这4种核苷酸可以分别记为:A、G、C、T。DNA携带的遗传信息可以用形如:AGGTCGACTCCA······的串来表示。DNA在转录复制的过程中可能会发生随机的偏差,这才最终造就了生物的多样性。为了简化问题,我们假设,DNA在复制
- 打卡第十二天
wswlqsss
机器学习
超参数调整专题2三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法学习优化算法的思路(避免浪费无效时间)作业:今天以自由探索的思路为主,尝试检索资料、视频、文档,用尽可能简短但是清晰的语言看是否能说清楚这三种算法每种算法的实现逻辑,帮助更深入的理解。ps:我之前写论文也用过这几种算法,也是纯借鉴对于实际实现逻辑没有了解过。遗传算法基于自然选择和遗传机制的优化算法,孟德尔随机化,模仿生物进化过
- 使用PyGAD训练Keras模型:从入门到实践
t0_54program
大数据与人工智能keras人工智能深度学习个人开发
在机器学习领域,如何高效地训练模型是一个关键问题。PyGAD作为一个开源的Python库,为我们提供了利用遗传算法来训练机器学习算法的有力工具,特别是在训练Keras模型方面,展现出独特的优势。一、PyGAD库简介PyGAD允许开发者构建遗传算法,并用于训练各类机器学习算法。它提供了丰富的参数,能针对不同类型的问题定制遗传算法。比如在解决一些复杂的优化问题时,我们可以通过调整这些参数,使遗传算法更
- 机器学习实战36-基于遗传算法的水泵调度优化项目研究与代码实现
微学AI
机器学习实战项目机器学习数学建模人工智能
大家好,我是微学AI,今天给大家介绍一下机器学习实战36-基于遗传算法的水泵调度优化项目研究与代码实现。文章目录一、项目介绍二、项目背景三、数学原理与算法分析动态规划模型遗传算法设计编码方案适应度函数约束处理算法参数能量消耗模型一泵房能耗二泵房能耗效率计算模型四、系统特性与创新点代码实现基于python实现完整代码五、应用价值与扩展方向六、结论一、项目介绍本项目是一个基于动态规划和遗传算法的水泵调
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源