- 基于遗传算法求解带有时间窗、车载容量限制、多车辆、单配送中心路径优化VRPTW(多约束)matlab代码
天天Matlab科研工作室
智能优化算法matlab仿真无人机matlab仿真电子资源matlab算法自动驾驶
1数学模型(1)有关模型的说明和假设1)模型中的已知量有:各需求点的位置坐标、各需求点的物料需求数量,各需求点的物料的到达时间要求,配送中心到各需求点的最短行驶距离,各需求点互相之间的最短运输距离。2)现场调查发现,需要配送的物料是可以混装在同一物料架上的,且各需求点需要的物料数量小于物料仓库的库存量。3)忽略在配送过程中车辆遇到的拥挤排队等不利于生产进行的外界因素,也就是说整个装配车间正常运行。
- 模糊规则优化matlab,遗传算法优化模糊pid控制规则
weixin_39619270
模糊规则优化matlab
用遗传算法优化模糊控制规则,有部分代码,不懂计算适应度那块调用子函数,子函数要怎么写?以及M程序如何和simulink相互调用?clearall;closeall;b=newfis('yichuan');b=addvar(b,'input','e',[-3,3]);%Parametereb=addmf(b,'input',1,'NB','zmf',[-3,-1]);b=addmf(b,'input
- 【智能算法】协同进化算法
大雨淅淅
智能算法人工智能机器学习网络算法
1、进化算法自从达尔文的生物进化论被接受,基于自然界中生物优胜劣汰的生存规则发展起来的生物进化的理论研究得到了空前的发展。将生物遗传变异、优胜劣汰的生存机制应用到优化领域,就得到了进化计算(EvolutionaryComputation,EC)。以种群形式存在的物种,想要生存下去,就必须通过遗传变异来适应环境,通过自身的不断完善来适应生存环境。遗传的目的在于将父代的优良性能传递给子代,让子代能更好
- 【GA MTSP】基于matlab遗传算法求解多旅行商问题(目标函数:最短距离 单起点多终点)【含Matlab源码 4354期】
Matlab研究室
matlab
欢迎来到Matlab研究室博客之家✅博主简介:985研究生,热爱科研的Matlab仿真开发者,完整代码论文复现程序定制期刊写作科研合作扫描文章底部QQ二维码。个人主页:Matlab研究室代码获取方式:扫描文章底部QQ二维码⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。更多Matlab路径规划仿真内容点击①Matlab路径规划(研究室版
- Python实现基因遗传算法
闲人编程
pythonpython开发语言基因遗传算法
目录基因遗传算法简介基因遗传算法的基本步骤Python实现基因遗传算法场景:优化二次函数Python代码实现代码解释场景说明总结基因遗传算法简介基因遗传算法(GeneticAlgorithm,GA)是一种基于自然选择和遗传学原理的优化算法,适用于求解复杂的组合优化问题。它通过模拟生物进化过程,如选择、交叉、变异等,逐步优化种群中的个体,最终逼近全局最优解。基因遗传算法的基本步骤初始化种群:随机生成
- MATLAB - 遗传算法(GA)求解旅行商问题(TSP)
kuan_li_lyg
MATLAB机器人与控制系统应用matlab算法人工智能遗传算法GA旅行商问题
系列文章目录文章目录系列文章目录前言一、旅行商问题(TSP)二、MATLAB步骤1.引入库2.为自定义数据类型定制遗传算法3.旅行商问题所需函数4.设置遗传算法选项前言这个例子展示了如何使用遗传算法来最小化使用自定义数据类型的函数。对遗传算法进行了定制化处理以解决旅行商问题。一、旅行商问题(TSP)旅行推销员问题(英语:Travellingsalesmanproblem,TSP)是这样一个问题:给
- LS-SDMTSP:遗传算法(GA)求解大规模单仓库多旅行商问题(LS-SDMTSP),MATLAB代码
IT猿手
TSPMATLABmatlablinux开发语言智能优化算法多目标算法
一、问题定义大规模单仓库多旅行商问题(Large-ScaleSingle-DepotMulti-TravelingSalesmanProblem,简称LS-SDMTSP)是组合优化领域中极具挑战性的经典问题。假设存在一个单一仓库,它既是所有旅行商的出发地,也是最终的返回地。同时,有数量众多的客户节点散布在地理空间中,并且有一支由多个旅行商组成的队伍。每个旅行商需要从仓库出发,遍历一定数量的客户节点
- 【多目标免疫遗传算法在选址中的应用】使用多目标免疫遗传算法计算较简化海上救援选址问题研究(Matlab代码实现)
Ps.729
前端
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述多目标免疫遗传算法在海上救援选址中的应用研究一、引言二、海上救援选址问题分析(一)问题描述(二)影响因素(三)多目标特性三、多目标免疫遗传算法原理(一)遗传算法基础(二)免疫遗传算法(三)多目标免疫遗传算法(四)NSGA-II算法四、基于MATLAB
- AI协助探索AI新构型自动化创新的技术实现
liron71
人工智能自动化神经网络
一、AI自进化架构的核心范式1.元代码生成与模块化重构-代码级自编程:基于神经架构搜索的强化学习框架,AI可通过生成元代码模板(框架的抽象层定义)自动组合功能模块。例如,使用注意力机制作为原子单元,通过遗传算法生成模块间连接规则。-动态代码编译:结合JIT即时编译技术,AI生成的模块化代码可在运行时动态编译为可执行单元,类似编译器对计算图的优化逻辑,同时增加结构可变性约束(如连接稀疏度阈值)。2.
- 遗传算法与深度学习实战(33)——WGAN详解与实现
盼小辉丶
深度学习人工智能生成对抗网络
遗传算法与深度学习实战(33)——WGAN详解与实现0.前言1.训练生成对抗网络的挑战2.GAN优化问题2.1梯度消失2.2模式崩溃2.3无法收敛3WassersteinGAN3.1Wasserstein损失3.2使用Wasserstein损失改进DCGAN小结系列链接0.前言原始的生成对抗网络(GenerativeAdversarialNetwork,GAN)在训练过程中面临着模式坍塌和梯度消失
- 遗传算法与深度学习实战(32)——生成对抗网络详解与实现
盼小辉丶
遗传算法与深度学习实战深度学习生成对抗网络人工智能
遗传算法与深度学习实战(32)——生成对抗网络详解与实现0.前言1.生成对抗网络2.构建卷积生成对抗网络小结系列链接0.前言生成对抗网络(GenerativeAdversarialNetworks,GAN)是一种由两个相互竞争的神经网络组成的深度学习模型,它由一个生成网络和一个判别网络组成,通过彼此之间的博弈来提高生成网络的性能。生成对抗网络使用神经网络生成与原始图像集非常相似的新图像,它在图像生
- 一切皆是映射:元学习中的神经架构搜索(NAS)
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
元学习神经架构搜索NAS遗传算法强化学习演化算法一切皆是映射:元学习中的神经架构搜索(NAS)在人工智能的广阔领域中,神经架构搜索(NeuralArchitectureSearch,简称NAS)是一颗璀璨的明星,它代表着一种全新的方法,即通过算法自动寻找最优的神经网络架构。这种思想源于元学习(Meta-Learning),它关注的是如何使学习过程本身变得更加高效。本文将深入探讨NAS的原理、方法、
- 重磅|粉丝福利|专栏1.8|配电网|分布式能源的选址与定容系列
Ps.729
分布式能源
在苍穹之下飘逸时间的纺织机编织一年的篇章晨曦拂面,鸟语花香迎接黎明的曙光繁星坠落,夜色绵长盛装星空的宁静岁月如歌,时光飞逝2024留下足迹,2025将开启新篇章让我们心怀希望,展开美丽的画卷2025年,愿我们梦想绽放,心灵自由舒展以下全部资源文章末尾下载专栏1.8配电网、分布式能源的选址与定容系列【遗传算法、粒子群、改进遗传算法】基于智能算法的电力系统电网最优规划方案的研究(Matlab代码实现)
- 2025年美赛数学建模 MCM Problem B: Managing Sustainable Tourism 问题 B:可持续旅游管理 代码解析
2025年数学建模美赛
2025年美赛MCM/ICM数学建模旅游2025美赛2025年数学建模美赛python代码matlab可持续旅游管理
目录代码框架:遗传算法优化可持续旅游模型python代码代码解析:matlab代码代码解析:代码框架:遗传算法优化可持续旅游模型python代码importnumpyasnpimportrandomimportmatplotlib.pyplotasplt#定义遗传算法的参数POP_SIZE=100#种群大小GENS=500#迭代代数MUTATION_RATE=0.01#变异率CROSSOVER_R
- 遗传算法GA特征选择Python
明天早下班YEAH
python笔记其他
一、遗传算法GA特征选择——代码importpandasaspdimportnumpyasnpfromsklearn.model_selectionimporttrain_test_splitfromsklearn.ensembleimportRandomForestRegressorfromsklearn.metricsimportmean_squared_error,r2_scorefromg
- 神经网络入门推荐知识,神经网络入门书籍推荐
快乐的小肥熊
ai智能写作神经网络matlab人工智能python
适合初学者的神经网络和遗传算法资料遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带
- 基于遗传算法的城市旅行问题(TSP)求解
NovakG_
深度学习python算法深度学习神经网络
1.遗传算法背景介绍遗传算法是一种基于生物进化论中的自然选择和遗传机制的优化算法,模拟了生物进化过程以搜索最优解。通过仿真染色体的交叉、变异等操作,遗传算法将求解过程转换为类似生物进化的迭代运算。该算法在解决复杂的组合优化问题时,通常比常规优化算法更高效,且具有广泛应用,包括组合优化、机器学习、信号处理、自适应控制和人工生命等领域2.遗传算法基本解题思路遗传算法的设计思路主要受到大自然中生物体进化
- pythonsvm模型优化_Python进化算法工具箱的使用(三)用进化算法优化SVM参数
weixin_39878698
pythonsvm模型优化
前言自从上两篇博客详细讲解了Python遗传和进化算法工具箱及其在带约束的单目标函数值优化中的应用以及利用遗传算法求解有向图的最短路径之后,我经过不断学习工具箱的官方文档以及对源码的研究,更加掌握如何利用遗传算法求解更多有趣的问题了。与前面的文章不同,本篇采用差分进化算法来优化SVM中的参数C和Gamma。(用遗传算法也可以,下面会给出效果比较)首先简单回顾一下Python高性能实用型遗传和进化算
- 差分进化算法_Python进化算法工具箱的使用(三)用进化算法优化SVM参数
weixin_39747075
差分进化算法
前言自从上两篇博客详细讲解了Python遗传和进化算法工具箱及其在带约束的单目标函数值优化中的应用以及利用遗传算法求解有向图的最短路径之后,我经过不断学习工具箱的官方文档以及对源码的研究,更加掌握如何利用遗传算法求解更多有趣的问题了。与前面的文章不同,本篇采用差分进化算法来优化SVM中的参数C和Gamma。(用遗传算法也可以,下面会给出效果比较)首先简单回顾一下Python高性能实用型遗传和进化算
- 差分进化算法DE
DroidMind
智能算法与机器学习差分进化算法
差分进化算法DE属于进化算法,这里算法还包括依次遗传算法、进化策略、进化规划。差分进化算法包括三个基本的操作:变异操作、交叉(重组)操作和选择操作。一、算法建模:1、假设我们希望得到函数f(x)的最优解,这个函数有D个解。2、为函数f(x)设置一个解的组数N,N至少为4。3、这样我们就得到了N组并且每组解的个数为D的集合,它可以使用N个D维参数向量来表示。因为它类似于遗传算法进化一样,是一代一代的
- 差分进化算法(Differential evolution,DE)(附详细注释的Python代码)
XijueJa
算法python开发语言
概念与基本原理差分进化算法(DifferentialEvolution,简称DE)是一种基于种群的随机优化算法,由Storm和Price在1995年提出。它主要应用于解决非线性、非凸、连续和离散的优化问题。DE算法以其简单性、鲁棒性和高效性而受到广泛关注。差分进化算法的基本思想是通过模拟自然进化过程中的遗传和变异机制来寻找问题的最优解,类似于遗传算法。通过变异、交叉与选择,使得初始化的种群不断朝最
- DNA图谱分析:自动分析DNA图谱中的变异YOLOv5、YOLOv8、YOLOv10
2025年数学建模美赛
YOLO深度学习目标跟踪机器人人工智能
目录引言项目背景与目标YOLO模型简介DNA图谱数据集准备YOLOv5、YOLOv8和YOLOv10模型训练与优化DNA图谱变异检测的实现UI界面设计与实现评估与优化未来展望结论完整代码实现1.引言随着基因组学的进步,DNA图谱分析已经成为基因检测、疾病诊断、遗传学研究等领域的重要工具。在DNA图谱中,通常会呈现出染色体的多个片段,其中的一些变异可能对健康产生深远的影响。手工分析DNA图谱变异不仅
- 遗传算法
神罗天征666
c++整理算法
遗传算法(GA)一、什么是遗传算法?遗传算法(GeneticAlgorithm,GA)是一类模仿生物进化过程的搜索启发式算法。它们是由约翰·霍兰德(JohnHolland)在20世纪70年代初提出的。遗传算法通过自然遗传机制(如选择、交叉、变异等)的模拟,对问题的潜在解进行进化,以期找到或逼近最优解。基本原理是类比达尔文进化论—“物竞天择,适者生存”其实很好理解,学过生物的都知道达尔文进化论的大概
- 北大数学校友胡懿娟归国任教!重回母校,专注于统计学、微生物学和遗传学的交叉领域
量子位
关注前沿科技量子位又一科学家从美归国——北大数学系校友胡懿娟。援引人民日报消息,在北京大学北京国际数学研究中心发布的2024年工作回顾中显示,她于去年7月入职北大。回来之后,她将继续专注于统计学、微生物学和遗传学的交叉领域,致力于解决实际的生物医学数据分析问题。△北大官网截图网友纷纷为她点赞:能力与颜值并存!同时也感叹,越来越多的科学家选择回到祖国,为科学技术发展和人才培养添砖加瓦。北大数学校友胡
- 遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络
盼小辉丶
遗传算法与深度学习实战深度学习kerascnn
遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络0.前言1.卷积神经网络基本概念1.1卷积1.2步幅1.3填充1.4激活函数1.5池化2.使用Keras构建卷积神经网络3.CNN层的问题4.模型泛化小结系列链接0.前言卷积神经网络(ConvolutionalNeuralNetwork,CNN)的提出是为了解决传统神经网络的缺陷。即使对象位于图片中的不同位置或其在图像中具有不同占比,
- 遗传算法与深度学习实战(26)——编码卷积神经网络架构
盼小辉丶
遗传算法与深度学习实战深度学习cnn遗传算法
遗传算法与深度学习实战(26)——编码卷积神经网络架构0.前言1.EvoCNN原理1.1工作原理1.2基因编码2.编码卷积神经网络架构小结系列链接0.前言我们已经学习了如何构建卷积神经网络(ConvolutionalNeuralNetwork,CNN),在本节中,我们将了解如何将CNN模型的网络架构编码为基因,这是将基因序列进化在为给定数据集上训练最佳模型的先决条件。1.EvoCNN原理进化卷积神
- 教师资格证常考的5个知识点
a3cb74a20840
知识点1:教育与人的发展(5规律、4因素、3动因)五大规律:顺序性—循序渐进阶段性—不搞“一刀切”不平衡性—抓关键期互补性—扬长避短个别差异性—因材施教考点精华:1.举例子对应五大规律;2.每个规律的教学启示;3规律特点。四大因素:遗传(地位:物质前提、可能性)环境(地位:多种可能、现实性)学校教育(主导)个人主观能动性(动力、决定)三大动因:内发论(1.孟子:性善论;2.弗洛伊德:性本能)外铄论
- 防不胜防的宝宝湿疹竟然因为这样做而渐渐消除。。。
xinju8830
宝宝在未满一周岁之前很容易罹患湿疹,婴儿湿疹是一种过敏性皮肤炎症,1-3个月的婴儿出生后就可以发现。南方婴儿湿疹在春夏季是高发季节,北方婴儿湿疹高发季在春秋时节。因为婴儿患湿疹的环境因素最主要是潮湿、阴暗造成的,南方的春夏最为潮湿,所以婴儿患湿疹的概率也就增加。能够引起婴幼儿湿疹的因素除了环境因素之外,还有遗传、饮食等多方因素,令家长防不胜防。那么在孩子出现了湿疹的症状时,妈妈们都应该怎么做?如何
- 乘风破浪,我们眼里藏着努力和未来
刘娟娟_培训师
居里夫人说:“17岁时你不漂亮,可以怪罪于母亲没有遗传好的容貌;但是30岁了依然不漂亮,就只能责怪自己,因为在那么漫长的日子里,你没有往生命里注入新的东西。”30岁之后相由心生,你内心的善良、智慧、经历都会写满整个脸。美一定是内外兼修我曾经遇到过很多女孩问我说说娟娟老师你怎么那么美,皮肤又好,还会穿搭。我笑笑想说其实是我天生底子好,但是我通常会说你要是稍加修饰美起来就没我啥事了。以前的我每天都是素
- 遗传与环境的作用
兔子老鼠马
相对于行为主义创始人华生的否认遗传作用和夸大环境和教育作用的理论,我国系统研究儿童发展心理学的专家朱智贤的心理发展观,更能说明遗传和环境在儿童发展中的作用。朱智贤用辩证唯物主义的观点探讨了儿童心理发展中先天与后天的关系,内因与外因的关系,教育与发展的关系,年龄特征与个别特点的关系等一系列重大问题。1.先天与后天的关系。首先承认先天因素在心理发展中的作用,不论遗传因素还是生理成熟,都是儿童青少年心理
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源