Scikit-Learn

Scikit-Learn_第1张图片

#Step 1
from sklearn.datasets import make_classification
datas = make_classification( n_samples = 1000, n_features=10 , )

#Step 2
from sklearn import cross_validation
kf = cross_validation.KFold( len(datas[0]) , n_folds = 10 ,shuffle = True)
for train_index , test_index in kf:
    x_train , y_train = datas[0][train_index] ,datas[1][train_index]
    x_test , y_test = datas[0][test_index] , datas[1][test_index]

#Step3 4 
#GaussianNB
from sklearn.naive_bayes import GaussianNB
from sklearn import metrics

clf = GaussianNB()
clf.fit( x_train , y_train )
pred = clf.predict( x_test )
acc = metrics.accuracy_score(y_test, pred)
print('GaussianNB:')
print('Accuracy ', acc)
f1 = metrics.f1_score(y_test, pred)
print('F1-score ', f1)
auc = metrics.roc_auc_score(y_test, pred)
print('AUC ROC ', auc)
print("\n")

#SVC
from sklearn.svm import SVC
clf = SVC(C=1e-01 , kernel='rbf' , gamma=0.1)
clf.fit( x_train , y_train )
pred = clf.predict( x_test )

acc = metrics.accuracy_score(y_test, pred)
print('SVC:')
print('Accuracy ', acc)
f1 = metrics.f1_score(y_test, pred)
print('F1-score ', f1)
auc = metrics.roc_auc_score(y_test, pred)
print('AUC ROC ', auc)
print("\n")

#RandomForest
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier( n_estimators = 10 )
clf.fit( x_train , y_train )
pred = clf.predict( x_test )

acc = metrics.accuracy_score(y_test, pred)
print('Random Forests:')
print('Accuracy ', acc)
f1 = metrics.f1_score(y_test, pred)
print('F1-score ', f1)
auc = metrics.roc_auc_score(y_test, pred)
print('AUC ROC ', auc)

结果:

Scikit-Learn_第2张图片


你可能感兴趣的:(Scikit-Learn)