close all;
clear all;
clc;
%% ----------init-----------------------------
f = imread('./original_DIP.tif');
f = mat2gray(f,[0 255]);
f_original = f;
[M,N] = size(f);
P = 2*M;
Q = 2*N;
fc = zeros(M,N);
for x = 1:1:M
for y = 1:1:N
fc(x,y) = f(x,y) * (-1)^(x+y);
end
end
F_I = fft2(fc,P,Q);
figure();
subplot(1,2,1);
imshow(f,[0 1]);
xlabel('a).Original Image');
subplot(1,2,2);
imshow(log(1 + abs(F_I)),[ ]);
xlabel('b).Fourier spectrum of a).');
%% ------motion blur------------------
H = zeros(P,Q);
a = 0.02;
b = 0.02;
T = 1;
for x = (-P/2):1:(P/2)-1
for y = (-Q/2):1:(Q/2)-1
R = (x*a + y*b)*pi;
if(R == 0)
H(x+(P/2)+1,y+(Q/2)+1) = T;
else H(x+(P/2)+1,y+(Q/2)+1) = (T/R)*(sin(R))*exp(-1i*R);
end
end
end
%% ------the atmospheric turbulence modle------------------
H_1 = zeros(P,Q);
k = 0.0025;
for x = (-P/2):1:(P/2)-1
for y = (-Q/2):1:(Q/2)-1
D = (x^2 + y^2)^(5/6);
D_0 = 60;
H_1(x+(P/2)+1,y+(Q/2)+1) = exp(-k*D);
end
end
%% -----------noise------------------
a = 0;
b = 0.2;
n_gaussian = a + b .* randn(M,N);
Noise = fft2(n_gaussian,P,Q);
figure();
subplot(1,2,1);
imshow(n_gaussian,[-1 1]);
xlabel('a).Gaussian noise');
subplot(1,2,2);
imshow(log(1 + abs(Noise)),[ ]);
xlabel('b).Fourier spectrum of a).');
%%
G = H .* F_I + Noise;
% G = H_1 .* F_I + Noise;
gc = ifft2(G);
gc = gc(1:1:M+27,1:1:N+27);
for x = 1:1:(M+27)
for y = 1:1:(N+27)
g(x,y) = gc(x,y) .* (-1)^(x+y);
end
end
gc = gc(1:1:M,1:1:N);
for x = 1:1:(M)
for y = 1:1:(N)
g(x,y) = gc(x,y) .* (-1)^(x+y);
end
end
figure();
subplot(1,2,1);
imshow(f,[0 1]);
xlabel('a).Original Image');
subplot(1,2,2);
imshow(log(1 + abs(F_I)),[ ]);
xlabel('b).Fourier spectrum of a).');
figure();
subplot(1,2,1);
imshow(abs(H),[ ]);
xlabel('c).The motion modle H(u,v)(a=0.02,b=0.02,T=1)');
subplot(1,2,2);
n = 1:1:P;
plot(n,abs(H(400,:)));
axis([0 P 0 1]);grid;
xlabel('H(n,400)');
ylabel('|H(u,v)|');
figure();
subplot(1,2,1);
imshow(real(g),[0 1]);
xlabel('d).Result image');
subplot(1,2,2);
imshow(log(1 + abs(G)),[ ]);
xlabel('e).Fourier spectrum of d). ');
%% --------------inverse_filtering---------------------
%F = G ./ H;
%F = G ./ H_1;
for x = (-P/2):1:(P/2)-1
for y = (-Q/2):1:(Q/2)-1
D = (x^2 + y^2)^(0.5);
if(D < 258)
F(x+(P/2)+1,y+(Q/2)+1) = G(x+(P/2)+1,y+(Q/2)+1) ./ H_1(x+(P/2)+1,y+(Q/2)+1);
% no noise D < 188
% noise D < 56
else F(x+(P/2)+1,y+(Q/2)+1) = G(x+(P/2)+1,y+(Q/2)+1);
end
end
end
% Butterworth_Lowpass_Filters
H_B = zeros(P,Q);
D_0 = 70;
for x = (-P/2):1:(P/2)-1
for y = (-Q/2):1:(Q/2)-1
D = (x^2 + y^2)^(0.5);
%if(D < 200) H_B(x+(P/2)+1,y+(Q/2)+1) = 1/(1+(D/D_0)^100);end
H_B(x+(P/2)+1,y+(Q/2)+1) = 1/(1+(D/D_0)^20);
end
end
F = F .* H_B;
f = real(ifft2(F));
f = f(1:1:M,1:1:N);
for x = 1:1:(M)
for y = 1:1:(N)
f(x,y) = f(x,y) * (-1)^(x+y);
end
end
%% ------show Result------------------
figure();
subplot(1,2,1);
imshow(f,[0 1]);
xlabel('a).Result image');
subplot(1,2,2);
imshow(log(1 + abs(F)),[ ]);
xlabel('b).Fourier spectrum of a).');
figure();
n = 1:1:P;
plot(n,abs(F(400,:)),'r-',n,abs(F(400,:)),'b-');
axis([0 P 0 1000]);grid;
xlabel('Number of rows(400th column)');
ylabel('Fourier amplitude spectrum');
legend('F_{limit}(u,v)','F(u,v)');
figure();
n = 1:1:P;
plot(n,abs(H(400,:)),'g-');
axis([0 P 0 1]);grid;
xlabel('H''_{s}(n,400)');
ylabel('|H''_{s}(u,v)|');
%% ----------Wiener filters-----------
% K = 0.000014;
K = 0.02;
%H_Wiener = ((abs(H_1).^2)./((abs(H_1).^2)+K)).*(1./H_1);
H_Wiener = ((abs(H).^2)./((abs(H).^2)+K)).*(1./H);
F_Wiener = H_Wiener .* G;
f_Wiener = real(ifft2(F_Wiener));
f_Wiener = f_Wiener(1:1:M,1:1:N);
for x = 1:1:(M)
for y = 1:1:(N)
f_Wiener(x,y) = f_Wiener(x,y) * (-1)^(x+y);
end
end
[SSIM_Wiener mssim] = ssim_index(f_Wiener,f_original,[0.01 0.03],ones(8),1);
SSIM_Wiener
%% ------show Result------------------
figure();
subplot(1,2,1);
%imshow(f_Wiener(1:128,1:128),[0 1]);
imshow(f_Wiener,[0 1]);
xlabel('d).Result image by Wiener filter');
subplot(1,2,2);
imshow(log(1+abs(F_Wiener)),[ ]);
xlabel('c).Fourier spectrum of c).');
% subplot(1,2,2);
% %imshow(f(1:128,1:128),[0 1]);
% imshow(f,[0 1]);
% xlabel('e).Result image by inverse filter');
figure();
n = 1:1:P;
plot(n,abs(F(400,:)),'r-',n,abs(F_Wiener(400,:)),'b-');
axis([0 P 0 500]);grid;
xlabel('Number of rows(400th column)');
ylabel('Fourier amplitude spectrum');
legend('F(u,v)','F_{Wiener}(u,v)');
figure();
subplot(1,2,1);
imshow(log(1 + abs(H_Wiener)),[ ]);
xlabel('a).F_{Wiener}(u,v).');
subplot(1,2,2);
n = 1:1:P;
plot(n,abs(H_Wiener(400,:)));
axis([0 P 0 80]);grid;
xlabel('Number of rows(400th column)');
ylabel('Amplitude spectrum');
%% ------------Constrained_least_squares_filtering---------
p_laplacian = zeros(M,N);
Laplacian = [ 0 -1 0;
-1 4 -1;
0 -1 0];
p_laplacian(1:3,1:3) = Laplacian;
P = 2*M;
Q = 2*N;
for x = 1:1:M
for y = 1:1:N
p_laplacian(x,y) = p_laplacian(x,y) * (-1)^(x+y);
end
end
P_laplacian = fft2(p_laplacian,P,Q);
F_C = zeros(P,Q);
r = 0.2;
H_clsf = ((H')./((abs(H).^2)+r.*P_laplacian));
F_C = H_clsf .* G;
f_c = real(ifft2(F_C));
f_c = f_c(1:1:M,1:1:N);
for x = 1:1:(M)
for y = 1:1:(N)
f_c(x,y) = f_c(x,y) * (-1)^(x+y);
end
end
%%
figure();
subplot(1,2,1);
imshow(f_c,[0 1]);
xlabel('e).Result image by constrained least squares filter (r = 0.2)');
subplot(1,2,2);
imshow(log(1 + abs(F_C)),[ ]);
xlabel('f).Fourier spectrum of c).');
[SSIM_CLSF mssim] = ssim_index(f_c,f_original,[0.01 0.03],ones(8),1);
figure();
subplot(1,2,1);
imshow(log(1 + abs(H_clsf)),[ ]);
xlabel('a).F_{clsf}(u,v).');
subplot(1,2,2);
n = 1:1:P;
plot(n,abs(H_clsf(400,:)));
axis([0 P 0 80]);grid;
xlabel('Number of rows(400th column)');
ylabel('Amplitude spectrum');
原文发于博客:http://blog.csdn.net/thnh169/
=============更新日志===================
NULL