目录
手机App抓包爬虫
阳光热线问政平台
(实战项目三)新浪网分类资讯爬虫
Cosplay图片下载爬虫
用Pymongo保存数据
三种Scrapy模拟登陆策略
1. items.py
class DouyuspiderItem(scrapy.Item):
name = scrapy.Field()# 存储照片的名字
imagesUrls = scrapy.Field()# 照片的url路径
imagesPath = scrapy.Field()# 照片保存在本地的路径
2. spiders/douyu.py
import scrapy
import json
from douyuSpider.items import DouyuspiderItem
class DouyuSpider(scrapy.Spider):
name = "douyu"
allowd_domains = ["http://capi.douyucdn.cn"]
offset = 0
url = "http://capi.douyucdn.cn/api/v1/getVerticalRoom?limit=20&offset="
start_urls = [url + str(offset)]
def parse(self, response):
# 返回从json里获取 data段数据集合
data = json.loads(response.text)["data"]
for each in data:
item = DouyuspiderItem()
item["name"] = each["nickname"]
item["imagesUrls"] = each["vertical_src"]
yield item
self.offset += 20
yield scrapy.Request(self.url + str(self.offset), callback = self.parse)
3. 设置setting.py
ITEM_PIPELINES = {'douyuSpider.pipelines.ImagesPipeline': 1}
# Images 的存放位置,之后会在pipelines.py里调用
IMAGES_STORE = "/Users/Power/lesson_python/douyuSpider/Images"
# user-agent
USER_AGENT = 'DYZB/2.290 (iPhone; iOS 9.3.4; Scale/2.00)'
4. pipelines.py
import scrapy
import os
from scrapy.pipelines.images import ImagesPipeline
from scrapy.utils.project import get_project_settings
class ImagesPipeline(ImagesPipeline):
IMAGES_STORE = get_project_settings().get("IMAGES_STORE")
def get_media_requests(self, item, info):
image_url = item["imagesUrls"]
yield scrapy.Request(image_url)
def item_completed(self, results, item, info):
# 固定写法,获取图片路径,同时判断这个路径是否正确,如果正确,就放到 image_path里,ImagesPipeline源码剖析可见
image_path = [x["path"] for ok, x in results if ok]
os.rename(self.IMAGES_STORE + "/" + image_path[0], self.IMAGES_STORE + "/" + item["name"] + ".jpg")
item["imagesPath"] = self.IMAGES_STORE + "/" + item["name"]
return item
#get_media_requests的作用就是为每一个图片链接生成一个Request对象,这个方法的输出将作为item_completed的输入中的results,results是一个元组,每个元组包括(success, imageinfoorfailure)。如果success=true,imageinfoor_failure是一个字典,包括url/path/checksum三个key。
在项目根目录下新建main.py文件,用于调试
from scrapy import cmdline
cmdline.execute('scrapy crawl douyu'.split())
执行程序
py2 main.py
http://wz.sun0769.com/index.php/question/questionType?type=4
爬取投诉帖子的编号、帖子的url、帖子的标题,和帖子里的内容。
import scrapy
class DongguanItem(scrapy.Item):
# 每个帖子的标题
title = scrapy.Field()
# 每个帖子的编号
number = scrapy.Field()
# 每个帖子的文字内容
content = scrapy.Field()
# 每个帖子的url
url = scrapy.Field()
Spider 版本
# -*- coding: utf-8 -*-
import scrapy
from dongguan.items import DongguanItem
class SunSpider(CrawlSpider):
name = 'sun'
allowed_domains = ['wz.sun0769.com']
url = 'http://wz.sun0769.com/index.php/question/questionType?type=4&page='
offset = 0
start_urls = [url + str(offset)]
def parse(self, response):
# 取出每个页面里帖子链接列表
links = response.xpath("//div[@class='greyframe']/table//td/a[@class='news14']/@href").extract()
# 迭代发送每个帖子的请求,调用parse_item方法处理
for link in links:
yield scrapy.Request(link, callback = self.parse_item)
# 设置页码终止条件,并且每次发送新的页面请求调用parse方法处理
if self.offset <= 71130:
self.offset += 30
yield scrapy.Request(self.url + str(self.offset), callback = self.parse)
# 处理每个帖子里
def parse_item(self, response):
item = DongguanItem()
# 标题
item['title'] = response.xpath('//div[contains(@class, "pagecenter p3")]//strong/text()').extract()[0]
# 编号
item['number'] = item['title'].split(' ')[-1].split(":")[-1]
# 文字内容,默认先取出有图片情况下的文字内容列表
content = response.xpath('//div[@class="contentext"]/text()').extract()
# 如果没有内容,则取出没有图片情况下的文字内容列表
if len(content) == 0:
content = response.xpath('//div[@class="c1 text14_2"]/text()').extract()
# content为列表,通过join方法拼接为字符串,并去除首尾空格
item['content'] = "".join(content).strip()
else:
item['content'] = "".join(content).strip()
# 链接
item['url'] = response.url
yield item
CrawlSpider 版本
# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from dongguan.items import DongguanItem
import time
class SunSpider(CrawlSpider):
name = 'sun'
allowed_domains = ['wz.sun0769.com']
start_urls = ['http://wz.sun0769.com/index.php/question/questionType?type=4&page=']
# 每一页的匹配规则
pagelink = LinkExtractor(allow=('type=4'))
# 每个帖子的匹配规则
contentlink = LinkExtractor(allow=r'/html/question/\d+/\d+.shtml')
rules = [
# 本案例为特殊情况,需要调用deal_links方法处理每个页面里的链接
Rule(pagelink, process_links = "deal_links", follow = True),
Rule(contentlink, callback = 'parse_item')
]
# 需要重新处理每个页面里的链接,将链接里的‘Type&type=4?page=xxx’替换为‘Type?type=4&page=xxx’(或者是Type&page=xxx?type=4’替换为‘Type?page=xxx&type=4’),否则无法发送这个链接
def deal_links(self, links):
for link in links:
link.url = link.url.replace("?","&").replace("Type&", "Type?")
print link.url
return links
def parse_item(self, response):
print response.url
item = DongguanItem()
# 标题
item['title'] = response.xpath('//div[contains(@class, "pagecenter p3")]//strong/text()').extract()[0]
# 编号
item['number'] = item['title'].split(' ')[-1].split(":")[-1]
# 文字内容,默认先取出有图片情况下的文字内容列表
content = response.xpath('//div[@class="contentext"]/text()').extract()
# 如果没有内容,则取出没有图片情况下的文字内容列表
if len(content) == 0:
content = response.xpath('//div[@class="c1 text14_2"]/text()').extract()
# content为列表,通过join方法拼接为字符串,并去除首尾空格
item['content'] = "".join(content).strip()
else:
item['content'] = "".join(content).strip()
# 链接
item['url'] = response.url
yield item
pipelines.py
# -*- coding: utf-8 -*-
# 文件处理类库,可以指定编码格式
import codecs
import json
class JsonWriterPipeline(object):
def __init__(self):
# 创建一个只写文件,指定文本编码格式为utf-8
self.filename = codecs.open('sunwz.json', 'w', encoding='utf-8')
def process_item(self, item, spider):
content = json.dumps(dict(item), ensure_ascii=False) + "\n"
self.filename.write(content)
return item
def spider_closed(self, spider):
self.file.close()
settings.py
ITEM_PIPELINES = {
'dongguan.pipelines.DongguanPipeline': 300,
}
# 日志文件名和处理等级
LOG_FILE = "dg.log"
LOG_LEVEL = "DEBUG"
在项目根目录下新建main.py文件,用于调试
from scrapy import cmdline
cmdline.execute('scrapy crawl sunwz'.split())
执行程序
py2 main.py
爬取新浪网导航页所有下所有大类、小类、小类里的子链接,以及子链接页面的新闻内容。
效果演示图:
items.py
import scrapy
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
class SinaItem(scrapy.Item):
# 大类的标题 和 url
parentTitle = scrapy.Field()
parentUrls = scrapy.Field()
# 小类的标题 和 子url
subTitle = scrapy.Field()
subUrls = scrapy.Field()
# 小类目录存储路径
subFilename = scrapy.Field()
# 小类下的子链接
sonUrls = scrapy.Field()
# 文章标题和内容
head = scrapy.Field()
content = scrapy.Field()
spiders/sina.py
# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
from Sina.items import SinaItem
import scrapy
import os
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
class SinaSpider(scrapy.Spider):
name= "sina"
allowed_domains= ["sina.com.cn"]
start_urls= [
"http://news.sina.com.cn/guide/"
]
def parse(self, response):
items= []
# 所有大类的url 和 标题
parentUrls = response.xpath('//div[@id=\"tab01\"]/div/h3/a/@href').extract()
parentTitle = response.xpath("//div[@id=\"tab01\"]/div/h3/a/text()").extract()
# 所有小类的ur 和 标题
subUrls = response.xpath('//div[@id=\"tab01\"]/div/ul/li/a/@href').extract()
subTitle = response.xpath('//div[@id=\"tab01\"]/div/ul/li/a/text()').extract()
#爬取所有大类
for i in range(0, len(parentTitle)):
# 指定大类目录的路径和目录名
parentFilename = "./Data/" + parentTitle[i]
#如果目录不存在,则创建目录
if(not os.path.exists(parentFilename)):
os.makedirs(parentFilename)
# 爬取所有小类
for j in range(0, len(subUrls)):
item = SinaItem()
# 保存大类的title和urls
item['parentTitle'] = parentTitle[i]
item['parentUrls'] = parentUrls[i]
# 检查小类的url是否以同类别大类url开头,如果是返回True (sports.sina.com.cn 和 sports.sina.com.cn/nba)
if_belong = subUrls[j].startswith(item['parentUrls'])
# 如果属于本大类,将存储目录放在本大类目录下
if(if_belong):
subFilename =parentFilename + '/'+ subTitle[j]
# 如果目录不存在,则创建目录
if(not os.path.exists(subFilename)):
os.makedirs(subFilename)
# 存储 小类url、title和filename字段数据
item['subUrls'] = subUrls[j]
item['subTitle'] =subTitle[j]
item['subFilename'] = subFilename
items.append(item)
#发送每个小类url的Request请求,得到Response连同包含meta数据 一同交给回调函数 second_parse 方法处理
for item in items:
yield scrapy.Request( url = item['subUrls'], meta={'meta_1': item}, callback=self.second_parse)
#对于返回的小类的url,再进行递归请求
def second_parse(self, response):
# 提取每次Response的meta数据
meta_1= response.meta['meta_1']
# 取出小类里所有子链接
sonUrls = response.xpath('//a/@href').extract()
items= []
for i in range(0, len(sonUrls)):
# 检查每个链接是否以大类url开头、以.shtml结尾,如果是返回True
if_belong = sonUrls[i].endswith('.shtml') and sonUrls[i].startswith(meta_1['parentUrls'])
# 如果属于本大类,获取字段值放在同一个item下便于传输
if(if_belong):
item = SinaItem()
item['parentTitle'] =meta_1['parentTitle']
item['parentUrls'] =meta_1['parentUrls']
item['subUrls'] = meta_1['subUrls']
item['subTitle'] = meta_1['subTitle']
item['subFilename'] = meta_1['subFilename']
item['sonUrls'] = sonUrls[i]
items.append(item)
#发送每个小类下子链接url的Request请求,得到Response后连同包含meta数据 一同交给回调函数 detail_parse 方法处理
for item in items:
yield scrapy.Request(url=item['sonUrls'], meta={'meta_2':item}, callback = self.detail_parse)
# 数据解析方法,获取文章标题和内容
def detail_parse(self, response):
item = response.meta['meta_2']
content = ""
head = response.xpath('//h1[@id=\"main_title\"]/text()')
content_list = response.xpath('//div[@id=\"artibody\"]/p/text()').extract()
# 将p标签里的文本内容合并到一起
for content_one in content_list:
content += content_one
item['head']= head
item['content']= content
yield item
pipelines.py
from scrapy import signals
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
class SinaPipeline(object):
def process_item(self, item, spider):
sonUrls = item['sonUrls']
# 文件名为子链接url中间部分,并将 / 替换为 _,保存为 .txt格式
filename = sonUrls[7:-6].replace('/','_')
filename += ".txt"
fp = open(item['subFilename']+'/'+filename, 'w')
fp.write(item['content'])
fp.close()
return item
settings.py
BOT_NAME = 'Sina'
SPIDER_MODULES = ['Sina.spiders']
NEWSPIDER_MODULE = 'Sina.spiders'
ITEM_PIPELINES = {
'Sina.pipelines.SinaPipeline': 300,
}
LOG_LEVEL = 'DEBUG'
在项目根目录下新建main.py文件,用于调试
from scrapy import cmdline
cmdline.execute('scrapy crawl sina'.split())
执行程序
py2 main.py
items.py
class CoserItem(scrapy.Item):
url = scrapy.Field()
name = scrapy.Field()
info = scrapy.Field()
image_urls = scrapy.Field()
images = scrapy.Field()
# -*- coding: utf-8 -*-
from scrapy.selector import Selector
import scrapy
from scrapy.contrib.loader import ItemLoader
from Cosplay.items import CoserItem
class CoserSpider(scrapy.Spider):
name = "coser"
allowed_domains = ["bcy.net"]
start_urls = (
'http://bcy.net/cn125101',
'http://bcy.net/cn126487',
'http://bcy.net/cn126173'
)
def parse(self, response):
sel = Selector(response)
for link in sel.xpath("//ul[@class='js-articles l-works']/li[@class='l-work--big']/article[@class='work work--second-created']/h2[@class='work__title']/a/@href").extract():
link = 'http://bcy.net%s' % link
request = scrapy.Request(link, callback=self.parse_item)
yield request
def parse_item(self, response):
item = ItemLoader(item=CoserItem(), response=response)
item.add_xpath('name', "//h1[@class='js-post-title']/text()")
item.add_xpath('info', "//div[@class='post__info']/div[@class='post__type post__info-group']/span/text()")
urls = item.get_xpath('//img[@class="detail_std detail_clickable"]/@src')
urls = [url.replace('/w650', '') for url in urls]
item.add_value('image_urls', urls)
item.add_value('url', response.url)
return item.load_item()
pipelines.py
import requests
from Cosplay import settings
import os
class ImageDownloadPipeline(object):
def process_item(self, item, spider):
if 'image_urls' in item:
images = []
dir_path = '%s/%s' % (settings.IMAGES_STORE, spider.name)
if not os.path.exists(dir_path):
os.makedirs(dir_path)
for image_url in item['image_urls']:
us = image_url.split('/')[3:]
image_file_name = '_'.join(us)
file_path = '%s/%s' % (dir_path, image_file_name)
images.append(file_path)
if os.path.exists(file_path):
continue
with open(file_path, 'wb') as handle:
response = requests.get(image_url, stream=True)
for block in response.iter_content(1024):
if not block:
break
handle.write(block)
item['images'] = images
return item
settings.py
ITEM_PIPELINES = {'Cosplay.pipelines.ImageDownloadPipeline': 1}
IMAGES_STORE = '../Images'
DOWNLOAD_DELAY = 0.25 # 250 ms of delay
在项目根目录下新建main.py文件,用于调试
from scrapy import cmdline
cmdline.execute('scrapy crawl coser'.split())
执行程序
py2 main.py
爬取豆瓣电影top250movie.douban.com/top250的电影数据,并保存在MongoDB中。
items.py
class DoubanspiderItem(scrapy.Item):
# 电影标题
title = scrapy.Field()
# 电影评分
score = scrapy.Field()
# 电影信息
content = scrapy.Field()
# 简介
info = scrapy.Field()
spiders/douban.py
import scrapy
from doubanSpider.items import DoubanspiderItem
class DoubanSpider(scrapy.Spider):
name = "douban"
allowed_domains = ["movie.douban.com"]
start = 0
url = 'https://movie.douban.com/top250?start='
end = '&filter='
start_urls = [url + str(start) + end]
def parse(self, response):
item = DoubanspiderItem()
movies = response.xpath("//div[@class=\'info\']")
for each in movies:
title = each.xpath('div[@class="hd"]/a/span[@class="title"]/text()').extract()
content = each.xpath('div[@class="bd"]/p/text()').extract()
score = each.xpath('div[@class="bd"]/div[@class="star"]/span[@class="rating_num"]/text()').extract()
info = each.xpath('div[@class="bd"]/p[@class="quote"]/span/text()').extract()
item['title'] = title[0]
# 以;作为分隔,将content列表里所有元素合并成一个新的字符串
item['content'] = ';'.join(content)
item['score'] = score[0]
item['info'] = info[0]
# 提交item
yield item
if self.start <= 225:
self.start += 25
yield scrapy.Request(self.url + str(self.start) + self.end, callback=self.parse)
pipelines.py
from scrapy.conf import settings
import pymongo
class DoubanspiderPipeline(object):
def __init__(self):
# 获取setting主机名、端口号和数据库名
host = settings['MONGODB_HOST']
port = settings['MONGODB_PORT']
dbname = settings['MONGODB_DBNAME']
# pymongo.MongoClient(host, port) 创建MongoDB链接
client = pymongo.MongoClient(host=host,port=port)
# 指向指定的数据库
mdb = client[dbname]
# 获取数据库里存放数据的表名
self.post = mdb[settings['MONGODB_DOCNAME']]
def process_item(self, item, spider):
data = dict(item)
# 向指定的表里添加数据
self.post.insert(data)
return item
settings.py
BOT_NAME = 'doubanSpider'
SPIDER_MODULES = ['doubanSpider.spiders']
NEWSPIDER_MODULE = 'doubanSpider.spiders'
ITEM_PIPELINES = {
'doubanSpider.pipelines.DoubanspiderPipeline' : 300
}
# Crawl responsibly by identifying yourself (and your website) on the user-agent
USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36'
# MONGODB 主机环回地址127.0.0.1
MONGODB_HOST = '127.0.0.1'
# 端口号,默认是27017
MONGODB_PORT = 27017
# 设置数据库名称
MONGODB_DBNAME = 'DouBan'
# 存放本次数据的表名称
MONGODB_DOCNAME = 'DouBanMovies'
运行
启动MongoDB数据库需要两个命令:
mongod:是mongoDB数据库进程本身
mongo:是命令行shell客户端
sudo mongod # 首先启动数据库服务,再执行Scrapy
sudo mongo # 启动数据库shell
在mongo shell下使用命令:
# 查看当前数据库
> db
# 列出所有的数据库
> show dbs
# 连接DouBan数据库
> use DouBan
# 列出所有表
> show collections
# 查看表里的数据
> db.DouBanMoives.find()
COOKIES_ENABLED
(Cookies中间件) 处于开启状态
COOKIES_ENABLED = True
或# COOKIES_ENABLED = False
策略一:直接POST数据(比如需要登陆的账户信息)
只要是需要提供post数据的,就可以用这种方法。下面示例里post的数据是账户密码:
# -*- coding: utf-8 -*-
import scrapy
class Renren1Spider(scrapy.Spider):
name = "renren1"
allowed_domains = ["renren.com"]
def start_requests(self):
url = 'http://www.renren.com/PLogin.do'
# FormRequest 是Scrapy发送POST请求的方法
yield scrapy.FormRequest(
url = url,
formdata = {"email" : "[email protected]", "password" : "axxxxxxxe"},
callback = self.parse_page)
def parse_page(self, response):
with open("mao2.html", "w") as filename:
filename.write(response.body)
策略二:标准的模拟登陆步骤
正统模拟登录方法:
首先发送登录页面的get请求,获取到页面里的登录必须的参数(比如说zhihu登陆界面的 _xsrf)
然后和账户密码一起post到服务器,登录成功
# -*- coding: utf-8 -*-
import scrapy
class Renren2Spider(scrapy.Spider):
name = "renren2"
allowed_domains = ["renren.com"]
start_urls = (
"http://www.renren.com/PLogin.do",
)
# 处理start_urls里的登录url的响应内容,提取登陆需要的参数(如果需要的话)
def parse(self, response):
# 提取登陆需要的参数
#_xsrf = response.xpath("//_xsrf").extract()[0]
# 发送请求参数,并调用指定回调函数处理
yield scrapy.FormRequest.from_response(
response,
formdata = {"email" : "[email protected]", "password" : "axxxxxxxe"},#, "_xsrf" = _xsrf},
callback = self.parse_page
)
# 获取登录成功状态,访问需要登录后才能访问的页面
def parse_page(self, response):
url = "http://www.renren.com/422167102/profile"
yield scrapy.Request(url, callback = self.parse_newpage)
# 处理响应内容
def parse_newpage(self, response):
with open("xiao.html", "w") as filename:
filename.write(response.body)
策略三:直接使用保存登陆状态的Cookie模拟登陆
如果实在没办法了,可以用这种方法模拟登录,虽然麻烦一点,但是成功率100%
# -*- coding: utf-8 -*-
import scrapy
class RenrenSpider(scrapy.Spider):
name = "renren"
allowed_domains = ["renren.com"]
start_urls = (
'http://www.renren.com/111111',
'http://www.renren.com/222222',
'http://www.renren.com/333333',
)
cookies = {
"anonymid" : "ixrna3fysufnwv",
"_r01_" : "1",
"ap" : "327550029",
"JSESSIONID" : "abciwg61A_RvtaRS3GjOv",
"depovince" : "GW",
"springskin" : "set",
"jebe_key" : "f6fb270b-d06d-42e6-8b53-e67c3156aa7e%7Cc13c37f53bca9e1e7132d4b58ce00fa3%7C1484060607478%7C1%7C1486198628950",
"t" : "691808127750a83d33704a565d8340ae9",
"societyguester" : "691808127750a83d33704a565d8340ae9",
"id" : "327550029",
"xnsid" : "f42b25cf",
"loginfrom" : "syshome"
}
# 可以重写Spider类的start_requests方法,附带Cookie值,发送POST请求
def start_requests(self):
for url in self.start_urls:
yield scrapy.FormRequest(url, cookies = self.cookies, callback = self.parse_page)
# 处理响应内容
def parse_page(self, response):
print "===========" + response.url
with open("deng.html", "w") as filename:
filename.write(response.body)