Android绘图机制与处理技巧(三)——Android图像处理之图形特效处理

Android变形矩阵——Matrix

对于图像的图形变换,Android系统是通过矩阵来进行处理的,每个像素点都表达了其坐标的X、Y信息。Android的图形变换矩阵是一个3x3的矩阵,如下图所示:

adgbehcfiA

XY1C

X1Y11R=AC

当使用变换矩阵去处理每一个像素点的时候,与颜色矩阵的矩阵乘法一样,计算公式如下所示:

X1=aX+bY+c
Y1=dX+eY+f
1=gX+hY+i

通常情况下,会让 g=h=0i=1 ,这样就使 1=gX+hY+i 恒成立。因此,只需着重关注上面几个参数即可。

与色彩变换矩阵的初始矩阵一样,图形变换矩阵也有一个初始矩阵。就是对角线元素a、e、i为1,其他元素为0的矩阵,如下图所示:

100010001

图像的变形处理通常包含以下四类基本变换:

  • Translate——平移变换
  • Rotate——旋转变换
  • Scale——缩放变换
  • Skew——错切变换

平移变换

平移变换的坐标值变换过程就是将每个像素点都进行平移变换,当从 P(x0,y0)P(x1,y1) 时,所需的平移矩阵如下所示:

x1y11=100010x1x0y1y01x0y01

旋转变换

旋转变换即指一个点围绕一个中心旋转到一个新的点。当从 P(x0,y0) 点,以坐标原点O为旋转中心旋转到 P(x1,y1) 时,可以将点的坐标都表达成OP与X轴正方向夹角的函数表达式(其中r为线段OP的长度, αOP(x0,y0)XθOP(x0,y0)OP(x1,y1) ),如下所示:

x0=rcosα
y0=rsinα
x1=rcos(α+θ)=rcosαcosθrsinαsinθ=x0cosθy0sinθ
y1=rsin(α+θ)=rsinαcosθ+rcosαsinθ=y0cosθ+x0sinθ

矩阵形式如下图所示:

x1y11=cosθsinθ0sinθcosθ0001x0y01

前面是以坐标原点为旋转中心的旋转变换,如果以任意点O为旋转中心来进行旋转变换,通常需要以下三个步骤:

  • 将坐标原点平移到O点
  • 使用前面讲的以坐标原点为中心的旋转方法进行旋转变换
  • 将坐标原点还原

缩放变换

一个像素点是不存在缩放的概念的,但是由于图像是由很多个像素点组成的,如果将每个点的坐标都进行相同比例的缩放,最终就会形成让整个图像缩放的效果,缩放效果的公式如下

x1=K1x0
y1=K2y0

矩阵形式如下图所示:

x1y11=K1000K20001x0y01

错切变换

错切变换(skew)在数学上又称为Shear mapping(可译为“剪切变换“)或者Transvection(缩并),它是一种比较特殊的线性变换。错切变换的效果就是让所有点的X坐标(或者Y坐标)保持不变,而对应的Y坐标(或者X坐标)则按比例发生平移,且平移的大小和该点到Y轴(或者X轴)的距离成正比。错切变换通常包含两种——水平错切与垂直错切。

错切变换的计算公式如下:

  • 水平错切

x1=x0+K1y0
y1=y0

  • 垂直错切

x1=x0
y1=K2x0+y0

矩阵形式如下图

x1y11=100K110001x0y01

x1y11=1K20010001x0y01

由上面的分析可以发现,这个图形变换3x3的矩阵与色彩变换矩阵一样,每个位置的元素所表示的功能是有规律的,总结如下:

ScaleXSkewY0SkewXScaleY0TransXTransY1

可以发现,a、b、c、d、e、f这六个矩阵元素分别对应以下变换:

  • a和e控制Scale——缩放变换
  • b和d控制Skew——错切变换
  • a和e控制Trans——平移变换
  • a、b、d、e共同控制Rotate——旋转变换

通过类似色彩矩阵中模拟矩阵的例子来模拟变形矩阵。在图形变换矩阵中,同样是通过一个一维数组来模拟矩阵,并通过setValues()方法将一个一维数组转换为图形变换矩阵,代码如下所示:

   private float[] mImageMatrix = new float[9];


   Matrix matrix = new Matrix();
   matrix.setValues(mImageMatrix);

当获得了变换矩阵后,就可以通过以下代码将一个图像以这个变换矩阵的形式绘制出来。

        canvas.drawBitmap(mBitmap, mMatrix, null);

运行程序后,初始界面如下所示:

Android绘图机制与处理技巧(三)——Android图像处理之图形特效处理_第1张图片

Android系统同样提供了一些API来简化矩阵的运算,我们不必每次都去设置矩阵的每一个元素值。Android中使用Matrix类来封装矩阵,并提供了以下几个操作方法来实现上面的四中变换方式:

  • matrix.setRotate()——旋转变换
  • matrix.setTranslate()——平移变换
  • matrix.setScale()——缩放变换
  • matrix.setSkew()——错切变换
  • matrix.preX和matrix.postY——提供矩阵的前乘和后乘运算

Matrix类的set方法会重置矩阵中的值,而post和pre方法不会,这两个方法常用来实现矩阵的混合作用。不过要注意的是,矩阵运算不满足乘法的交换律,所以矩阵乘法的前乘和后乘是两种不同的运算方式。举例说明,比如需要实现以下效果:

  • 先旋转45度
  • 再平移到(200, 200)

如果使用后乘运算,表示当前矩阵乘上参数代表的矩阵,代码如下所示:

        matrix.setRotate(45);
        matrix.postTranslate(200, 200);

如果使用前乘运算,表示参数代表的矩阵乘上当前矩阵,代码如下所示:

        matrix.setTranslate(200, 200);
        matrix.preRotate(45);

像素块分析

图像的特效处理有两种方式,即使用矩阵来进行图像变换和使用drawBitmapMesh()方法来进行处理。drawBitmapMesh()与操纵像素点来改变色彩的原理类似,只不过是把图像分成了一个个的小块,然后通过改变每一个图像块来修改整个图像。

drawBitmapMesh()方法代码如下:

public void drawBitmapMesh(Bitmap bitmap, int meshWidth, int meshHeight, float[] verts, int vertOffset, int[] colors, int colorOffset, Paint paint)

关键的参数如下:

  • bitmap:将要扭曲的图像
  • meshWidth:需要的横向网格数目
  • meshHeight :需要的纵向网格数目
  • verts:网格交叉点坐标数组
  • vertOffset:verts数组中开始跳过的(x, y)坐标对的数目

要使用drawBitmapMesh()方法就需先将图片分割为若干个图像块。所以,在图像上横纵各画N条线,而这横纵各N条线就交织成了NxN个点,而每个点的坐标则以 x1,y1,x2,y2,...,xn,yn 的形式保存在verts数组中。也就是说verts数组的每两位用来保存一个交织点,第一个是横坐标,第二个是纵坐标。而整个drawBitmapMesh()方法改变图像的方式,就是靠这些坐标值的改变来重新定义每一个图像块,从而达到图像效果处理的功能。

drawBitmapMesh()方法的功能非常强大,基本上可以实现所有的图像特效,但使用起来也非常复杂,其关键就是在于计算、确定新的交叉点的坐标。下面举例说明如何使用drawBitmapMesh()方法来实现一个旗帜飞扬的效果。

要想达到旗帜飞扬的效果,只需要让图片中每个交叉点的横坐标较之前不发生变化,而纵坐标较之前坐标呈现一个三角函数的周期性变化即可。

首先获取交叉点的坐标,并将坐标保存到orig数组中,其获取交叉点坐标的原理就是通过循环遍历所有的交叉线,并按比例获取其坐标,代码如下所示:

        mBitmap = BitmapFactory.decodeResource(context.getResources(), R.mipmap.test);
        float bitmapWidth = mBitmap.getWidth();
        float bitmapHeight = mBitmap.getHeight();
        int index = 0;
        for (int y = 0; y <= HEIGHT ; y++) {
            float fy = bitmapHeight * y / HEIGHT;
            for (int x = 0; x <= WIDTH; x++) {
                float fx = bitmapWidth * x / WIDTH;
                orig[index * 2] = verts[ index * 2] = fx;
                //这里人为将坐标+100是为了让图像下移,避免扭曲后被屏幕遮挡
                orig[index * 2 + 1] = verts[ index * 2 + 1] = fy + 100;
                index++;
            }
        }

接下来,在onDraw()方法中改变交叉点的纵坐标的值,为了实现旗帜飘扬的效果,使用一个正弦函数 sinx 来改变交叉点纵坐标的值,而横坐标不变,并将变化后的值保存到verts数组中,代码如下所示:

    @Override
    protected void onDraw(Canvas canvas) {
        super.onDraw(canvas);
        flagWave();
        K += 0.1f;//将K的值增加
        canvas.drawBitmapMesh(mBitmap, WIDTH, HEIGHT, verts, 0, null, 0, null);
        invalidate();
    }

    /**
     * 按当前点所在的横坐标的位置来确定纵坐标的偏移量,其中A代表正弦函数中的振幅大小
     */
    private void flagWave() {
        for (int j = 0; j <= HEIGHT; j++) {
            for (int i = 0; i <= WIDTH; i++) {
                //在获取纵坐标的偏移量时,利用正弦函数的周期性给函数增加一个周期K * Math.PI,就是为了让图像能够动起来
                float offsetY = (float) Math.sin(2 * Math.PI * i / WIDTH + K * Math.PI);
                verts[(j * (WIDTH + 1) + i) * 2 + 1] = orig[(j * (WIDTH + 1) + i) * 2 + 1] + offsetY * A;
            }
        }
    }

这样,每次在重绘时,通过改变相位来改变偏移量,从而造成一个动态的效果,就好象旗帜在风中飘扬一样,效果图如下。

Android绘图机制与处理技巧(三)——Android图像处理之图形特效处理_第2张图片

使用drawBitmapMesh()方法可以创建很多复杂的图像效果,但是对它的使用也相对复杂,需要我们对图像处理有很深厚的功底。同时,对算法的要求也比较高,需要计算各种特效下不同的坐标点变化规律,从而设计出不同的特效。

代码地址

你可能感兴趣的:(Android群英传)