c++11的闭包(lambda、function、bind)

    c++11开始支持闭包,闭包:与函数A调用函数B相比较,闭包中函数A调用函数B,可以不通过函数A给函数B传递函数参数,而使函数B可以访问函数A的上下文环境才可见(函数A可直接访问到)的变量;比如:

    函数B(void) {

        ......

    }

    函数A {

        int a = 10;

        B();    //普通调用函数B

    }

    函数B无法访问a;但如果是按闭包的方式,则可以访问变量a:

    函数A() {

        int a = 10;

        auto closure_B = [a]() {

            ......

        }

    }

    所以闭包的优缺点很清晰,都是同一个:可以不通过传参获取调用者的上下文环境;

    

    下面开始介绍c++11的闭包所涉及的内容:

    1、lambda

    1.1、lambda的定义

    1.2、lambda的应用

    1.3、lambda的使用注意事项

    2、function

    2.1、通过lambda的function

    2.2、通过函数的function


    1、lambda

    1.1、lambda的定义:

        匿名表达式的结构:auto lambda = [捕获列表] (参数列表) (修饰符) {匿名函数体};

        关于捕获列表:捕获调用者上下文环境的需要访问的变量,可按值捕获或按引用捕获,其规则如下:

        []:什么也不捕获

        [=]:捕获所有一切变量,都按值捕获

        [&]:捕获所有一切变量,都按引用捕获

        [=, &a]:捕获所有一切变量,除了a按引用捕获,其余都按值捕获

        [&, =a]:捕获所有一切变量,除了a按值捕获,其余都按引用捕获

        [a]:只按值捕获a

        [&a]:只按引用捕获a

        [a, &b]:按值捕获a,按引用捕获b

        关于参数列表:

        和函数调用的参数列表含义完全一样;

        关于修饰符:

        mutable:必须注意加入mutable可以修改的是:在lambda匿名函数体里边,按值捕获到的变量,实质上是调用者函数中变量的只读拷贝(read-only),加入了mutable后,匿名函数体内部可以修改这个拷贝的值,也就是说调用者函数中该变量的值依然不会被改变;

        关于匿名函数体:

        和函数没有区别;

    1.2、lambda的应用:

        a. 最简单的使用:

TEST (test1, lambda_1) {
//capture list is empty, all the args is value, so variable b will not change.
    int a = 1, b = 2;
    auto lambda = [](int a, int b) {
        b = a + a + a;
        return a + b;
    };

    std::cout << lambda(a, b) << std::endl;
    std::cout << b << std::endl;
}

        这里捕获列表为空,完全相当于调用普通函数

        b. 捕获列表非空:

TEST (test1, lambda_2) {
//capture list is not empty, x is value, y is reference, and arg z is reference
//so y will change to 1, z will change to 1
//x is value, so x is read-only in lambda, should not modify x in lambda
    int x = 1, y = 2;
    auto lambda = [x, &y](int &z) {
        z = x;
        y = x;
        //x = y;
        return y;
    };

    int z = 0;
    std::cout << lambda(z) << std::endl;
    std::cout << y << std::endl;
    std::cout << z << std::endl;
}

        捕获列表非空,变量x传值,变量y传引用,并且传一个参数z;

        c. 捕获全部变量 & 使用mutable修饰符:

TEST (test1, lambda_3) {
//'=' in capture list means that all the variables will as value in lambda, so should not modify a, a is read-only in lambda
    int a = 1;
    auto lambda_val = [=]() {
        //a = 10;
        return a + 1;
    };
    std::cout << lambda_val() << std::endl;
    std::cout << a << std::endl;

//'&' '=' in capture list means that all the variables will as reference in lambda, so could modify a
    auto lambda_ref = [&]() {
        a = a + 1;
        return a + 1;
    };
    std::cout << lambda_ref() << std::endl;
    std::cout << a << std::endl;

//though '=' in capture list means all the variables as value in lambda_val_mutable, but lambda_val_mutable is mutable, so also could modify a
    auto lambda_val_mutable = [=]() mutable {
        a = 10;
        return a + 1;
    };
    std::cout << lambda_val_mutable() << std::endl;
    std::cout << a << std::endl;
}

        使用[=]按值、[&]按引用捕获一切变量;使用mutable修饰符,在匿名函数体内部修改按值传入的变量,注意在调用者函数不会被修改生效;

        d. lambda的定义时初始化:

TEST (test1, lambda_4) {
//all capture variables will value in lambda, so a will not change, return a + 1 = 2
    int a = 1;

    a = 3;
    auto lambda_val = [=]() {
        //a = b;
        return a + 1;
    };

    int b = 10;
    std::cout << lambda_val() << std::endl;
    std::cout << a << std::endl;

//a is change to 10, but for lambda_val, a is inited(read-only), will not change to 10, forever is 1
    a = 10;
    std::cout << lambda_val() << std::endl;
    std::cout << a << std::endl;
}

        lambda表达式定义时,调用者上下文环境中的变量有哪些、值都是什么,是"一次性"初始化的,也就是说即便后面值被修改,但lambda是无法获知的,后面再创建的新的变量,lambda是无法访问的;

        e. 部分变量传引用或者传值:

TEST (test1, lambda_5) {
//exclude b is reference in lambda, all the other variables in capture list will be value in lambda
    int a = 1, b = 2, c = 3, d = 4, e = 5;
    auto lambda = [=, &b](int f) {
        b = a + c + d + e;
        return a + b + c + d + e;
    };

    std::cout << lambda(6) << std::endl;
    std::cout << b << std::endl;
}

        f. 类成员函数使用lambda:

TEST (test1, lambda_6) {
//in a class-function, lambda's capture list is this point, so could access and modify the class non-const variable
    class cls {
        int a;
        int b;
        int c;
        const int d;
    public:
        cls():a(1), b(2), c(3), d(5) {}
        ~cls(){}
        void testlambda() {
            auto lambda = [this]() {
                a = 10;
                //d = 1;
                return a + b + c + d;
            };

            std::cout << a << std::endl;
            std::cout << lambda() << std::endl;
            std::cout << a << std::endl;
        }
    };

    cls c;
    c.testlambda();
}

        this指针进入捕获列表,匿名函数体内部即可调用类成员变量;

        g. c++11风格的lambda的使用:

TEST (test1, lambda_7) {
    std::vector v = {3,5,2,1,7,8,6,4,10,9};

    std::sort(begin(v), end(v), [](int i, int j) {
        return i > j;
    });

    std::for_each(begin(v), end(v), [](int i) {
        std::cout << i << " ";
    });
    std::cout << std::endl;

    int total = 0;
    for_each (begin(v), end(v), [&](int i) {
        total += i;
    });
    std::cout << total << std::endl;

    int base = 2;
    for_each (begin(v), end(v), [=](int i) mutable {
        total += (i * base);
        std::cout << total << "," << i << "," << base << std::endl;
    });
    std::cout << total << std::endl;

    for_each (begin(v), end(v), [&](int i) mutable {
        total += (i * base);
        std::cout << total << "," << i << "," << base << std::endl;
    });
    std::cout << total << std::endl;
}

        像python一样的使用;

    1.3、lambda使用的注意事项:

        lambda常常作为线程执行函数使用,这时尤其要注意调用者上下文环境的变量(及其指向的内存空间)的生命周期,是否能够和以lambda作为线程执行函数的线程的生命周期一样长,如下面的两个例子:

        会导致出问题的:        

TEST (test3, closure_wrong) {
    int *a = new int(10);
    std::thread th = std::thread([&a] () {
        while (1) {
            std::cout << "a: " << a << ", *a: " << *a << std::endl;
            std::this_thread::sleep_for(std::chrono::seconds(1));
        }
    });

    std::this_thread::sleep_for(std::chrono::seconds(3));
    delete a;
    a = nullptr;
    std::this_thread::sleep_for(std::chrono::seconds(30));//closure will collapse...
}

        动态变量a申请了4字节的动态空间,作为线程执行函数的匿名函数使用了变量a指向的动态空间;然后a在调用者函数内部释放了动态空间,但匿名函数依然访问该动态空间,此时导致发生程序崩溃;

        不会导致出问题的:

TEST (test3, closure_right) {
    int *a = new int(10);
    std::thread th = std::thread([a] () {
        while (1) {
            std::cout << "a: " << a << std::endl;
            std::this_thread::sleep_for(std::chrono::seconds(1));
        }
    });

    th.detach();
    std::this_thread::sleep_for(std::chrono::seconds(3));
    delete a;
    a = nullptr;
    std::this_thread::sleep_for(std::chrono::seconds(30));//closure will not collapse
}
        上面的程序不会出现问题,因为匿名函数内部没有访问变量a指向的动态空间。但依然是不推荐的方式。应确保匿名函数访问的外部捕获变量,不会在线程生命周期内失效;


    2、function:

        掌握了lambda,function就非常容易掌握;c++11定义一个函数std::function,可以绑定一个匿名函数表达式lambda,也可以绑定一个普通函数(包括类成员函数);

    2.1、绑定lambda匿名函数:

TEST (test2, function_lambda) {
    int a = 1, b = 2;
    std::function func1 = std::function([a, &b] (const int &i) {
        b = a + i;
        return a + b;
    });

    int c = 10;
    std::cout << func1(std::cref(c)) << std::endl;
    std::cout << a << std::endl;
    std::cout << b << std::endl;

    std::function func2 = std::function([a, &b] (const int &i, int &j) {
        int k = i + j;
        b = a + k;
        j = a + b;
        return a + b + j;
    });

    int d = 10, e = 20;
    std::cout << func2(d, e) << std::endl;
    std::cout << b << std::endl;
    std::cout << e << std::endl;

    class cls {
        int a;
        int b;
        int c;

    public:
        cls(int x, int y, int z):a(x), b(y), c(z){}
        ~cls(){}

        double CalcAverage() {
            auto calcer = std::function([this] {
                return (a + b + c)/3.0;
            });

            return calcer();
        }
    };

    std::vector v;
    std::random_device rd;
    for (auto idx: common::Range(0, 3)) {
        int i = rd() % 10;
        v.push_back(i);
        std::cout << "input " << i << std::endl;
    }
    cls cl(v[0], v[1], v[2]);
    double average = cl.CalcAverage();
    std::cout << std::fixed << std::setprecision(6) << average << std::endl;
}

        函数func1、func2就是绑定lambda的匿名函数;而cls的类成员函数CalcAverage,就是编写了一个匿名函数calcer再调用的闭包方式;

    2.2、绑定普通函数(包括类成员函数):

int func1 (const int &i, const int j, int &k) {
    k = i - j;
    return i + j;
}
int func2 (int &i, double j, const std::string k) {
    return i + (int)j;
}
TEST (test2, function_simple_and_bind) {
    int i = 0, j = 1, k = 2;
    auto f1 = std::function(func1);
    std::cout << f1(std::cref(i), j, std::ref(k)) << std::endl;
    std::cout << k << std::endl;
    
//if use bind and adjust the arg order, such as: arg_3 is actively arg_1, arg_1 is actively arg_2, arg_2 is actively arg_3, 
//the std::function's arg define, must obey to the active datastruct, 
//for example as follow, arg_1 is const int, arg_2 is int&, arg_3 is const int &, so f2's arg order is "const int + int & + const int &", and also when call f2.
    auto f2 = std::function(std::bind(func1, std::placeholders::_3, std::placeholders::_1, std::placeholders::_2));
    std::cout << f2(k, std::ref(j), std::cref(i)) << std::endl;//equal: func1(k, j, i)
    std::cout << k << std::endl;

    auto f3 = std::function(std::bind(func2, std::ref(j), std::placeholders::_1, "aaa"));
    std::cout << f3(1.1) << std::endl;

    class cls {
        int a;
        int b;
        int c;

    public:
        cls(int x, int y, int z):a(x), b(y), c(z){}
        ~cls(){}

        void Run() {
            int i = 4;
            auto func = std::function([this, i] (int &base){
                int times = 8;
                while (times--) {
                    std::this_thread::sleep_for(std::chrono::seconds(1));
                    std::cout << std::fixed << std::setprecision(6) << (a + b + c + base)/i << std::endl;
                    base = a + b + c + base;
                }
            });

            int base = 10;
            func(std::ref(base));
        }
    };

    cls cl(1, 2, 3);
    cl.Run();


    class cls2 {
        int a;
        int b;
        int c;

    public:
        cls2(int x, int y, int z):a(x), b(y), c(z){}
        ~cls2(){}

        void RealRun (int &base) {
            int times = 8;
            while (times--) {
                std::this_thread::sleep_for(std::chrono::seconds(1));
                std::cout << (a + b + c + base) << std::endl;
                base = a + b + c + base;
            }
        }

        void Run () {
            int base = 10;
            auto f = std::bind(&cls2::RealRun, this, base);
            f();
        }
    };

    cls2 cl2(1, 2, 3);
    cl2.Run();
}

        f1是直接绑定一个普通函数;

        f2是通过std::bind绑定一个普通函数,并且修改了函数传参顺序;

        f3也是通过std::bind绑定一个普通函数,进一步修改了函数传参个数;

        这里描述下std::bind的传参个数和顺序,通过bind修改传参的个数或者顺序,实现对同一个普通函数实现(包括类成员函数),有任意的自定义传参的函数变体,如对于下面的函数A:

        函数A (int, double, string) {......},可以实现如下变体:

        f1 = std::bind(&A, 1, 1.1, std::placeholders::_1)                                  //f1("abc")  ==  A(1,1.1,"abc")

        f2 = std::bind(&A, std::placeholders::_2, 1.1, std::placeholders::_1)   //f2("abc",1) ==  A(1,1.1,"abc")

      f3 = std::bind(&A, std::placeholders::_3,std::placeholders::_1,std::placeholders::_2)    //f3(1.1,"abc",1) == A(1,1.1,"abc")

        int b =1;

        f4 = std::bind(&A, b,std::placeholders::_1,"abc")    //f4(1.1) == A(1,1.1,"abc")

        f1、f2、f3对应的函数定义都是函数A的函数定义,但是实现了不同形态的函数调用"变体",方便根据具体情况自定义;

        

        cls类成员函数Run,通过lambda实现闭包;

        cls2类成员函数Run,通过bind另一个成员函数RealRun实现闭包;

    


你可能感兴趣的:(一分钟系列,"一分钟"学习复习系列)