深度学习RNN实现股票预测实战(附数据、代码)

背景知识

最近再看一些量化交易相关的材料,偶然在网上看到了一个关于用RNN实现股票预测的文章,出于好奇心把文章中介绍的代码在本地跑了一遍,发现可以work。于是就花了两个晚上的时间学习了下代码,顺便把核心的内容翻译成中文分享给大家。

 

首先讲讲对于股票预测的理解,股票是一种可以轻易用数字表现律动的交易形式。因为大数定理的存在,定义了世间所有的行为都可以通过数字表示,并且存在一定的客观规律。股票也不例外,量化交易要做的就是通过数学模型发现股票的走势趋势。“趋势”要这样理解:对于股票的预测,不是说我知道这个股票昨天指数是多少,然后预测今天他的指数能涨到多少。而是,我们通过过去一段时间股票的跌或者涨,总结出当出现某种波动的时候股票会有相应的涨或者跌的趋势。于是就引出了RNN的概念。


RNN是一种深度学习的网络结构,RNN的优势是它在训练的过程中会考虑数据的上下文联系,非常适合股票的场景,因为某一时刻的波动往往跟之前的走势蕴含某种联系。RNN是由一个个神经元cell组成,然而传统的RNN当网络过于复杂的时候,后方节点对于前方的感知力会下降,LSTMLong-short Term Memory)是一种变型,从名字就可以看出来,LSTM可以增加记忆力,解决上面提到的问题。对于股票这个场景,我们就可以通过LSTM来实现股票的走势的预测。



在股票这个场景下,通过上面这个图可以看出来,输入的是时间tt+1t+2的股票信息,可以返回t+1t+2t+3的股票信息,而且上下节点前后依赖,通过LSTM模型对于这样的股票序列进行预测,所以股票预测的关键就是首先构建股票序列化数据,然后训练LSTM模型,最终通过这个模型对于股票进行预测,以上就是大体的一些思路。

数据说明

本次实验使用的是一只叫SP500的股票,可以从雅虎下载这只股从50年到现在每天的走势情况,这里只需要关心每次收盘价格,也就是close字段即可。数据截图:

你可能感兴趣的:(深度学习RNN实现股票预测实战(附数据、代码))