【甘道夫】tensorflow的session.run运行一个op和多个op的区别

背景:

session.run方法可以传入一个op,也可以传入op列表,例如,我们希望执行op1和op2,有两种写法:

sess.run(op1)

sess.run(op2)

sess.run([op1, op2])

如果op1和op2有相互包含关系,第写法1会将op1和op2的图各完整执行一遍,而写法2不会重复执行op1和op2中的公共部分。

例如:

# coding: utf-8
# 导入tensorflow
import tensorflow as tf

with tf.Session() as sess:
    base_path = '/Users/gandalf/WorkSpace/test/inputtexts/'
    # 3个文件
    filename = [base_path + 'a.txt', base_path + 'b.txt', base_path + 'c.txt']
    # 构造文件名队列,epoch内非随机排序,1个epoch
    filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=1)
    # WholeFileReader每次读出的是一个文件的所有内容
    reader = tf.WholeFileReader()
    key, value = reader.read(filename_queue)

    # tf.train.string_input_producer定义了一个epoch变量,要对它进行初始化
    tf.local_variables_initializer().run()
    # 使用start_queue_runners之后,才会开始填充队列
    coord = tf.train.Coordinator()  # 为监测输入文件名队列是否处理结束
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)  # 启动文件读取线程
    try:
        while not coord.should_stop():
            # 同时运行多个op
            key_data, txt_data = sess.run([key, value])
            print "key:" + key_data
            print "value:\n" + txt_data
            print "-------------------------"

    except tf.errors.OutOfRangeError:
        print('Done reading, file queue ended.')
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()

输出:

gandalfdeMacBook-Air:test gandalf$ python sessrun.multi.test.py 

2018-08-19 20:01:30.853685: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA

key:/Users/gandalf/WorkSpace/test/inputtexts/a.txt

value:

1 1 1

2 2 2

3 3 3

-------------------------

key:/Users/gandalf/WorkSpace/test/inputtexts/b.txt

value:

4 4 4

5 5 5

6 6 6

-------------------------

key:/Users/gandalf/WorkSpace/test/inputtexts/c.txt

value:

7 7 7

8 8 8

9 9 9

-------------------------

Done reading, file queue ended.

可见,3个输入文件在1个epoch中被顺利输出。

我们试试独立输入op:

# coding: utf-8
# 导入tensorflow
import tensorflow as tf

with tf.Session() as sess:
    base_path = '/Users/gandalf/WorkSpace/test/inputtexts/'
    # 3个文件
    filename = [base_path + 'a.txt', base_path + 'b.txt', base_path + 'c.txt']
    # 构造文件名队列,epoch内非随机排序,1个epoch
    filename_queue = tf.train.string_input_producer(filename, shuffle=False, num_epochs=1)
    # WholeFileReader每次读出的是一个文件的所有内容
    reader = tf.WholeFileReader()
    key, value = reader.read(filename_queue)

    # tf.train.string_input_producer定义了一个epoch变量,要对它进行初始化
    tf.local_variables_initializer().run()
    # 使用start_queue_runners之后,才会开始填充队列
    coord = tf.train.Coordinator()  # 为监测输入文件名队列是否处理结束
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)  # 启动文件读取线程
    try:
        while not coord.should_stop():
            # 输入多个op
            # key_data, txt_data = sess.run([key, value])

            # 输入单独op
            key_data = sess.run(key)
            txt_data = sess.run(value)

            print "key:" + key_data
            print "value:\n" + txt_data
            print "-------------------------"

    except tf.errors.OutOfRangeError:
        print('Done reading, file queue ended.')
    finally:
        coord.request_stop()

    coord.join(threads)
    sess.close()

输出:

gandalfdeMacBook-Air:test gandalf$ python sessrun.multi.test.py 

2018-08-19 20:03:07.207565: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA

key:/Users/gandalf/WorkSpace/test/inputtexts/a.txt

value:

4 4 4

5 5 5

6 6 6

-------------------------

Done reading, file queue ended.

原理:

第一轮循环:

执行key_data = sess.run(key)时就已经针对第一个文件a.txt执行完了一遍graph,所以打印的key_data是:

/Users/gandalf/WorkSpace/test/inputtexts/a.txt

执行txt_data = sess.run(value)后,已经针对第二个文件b.txt执行完了一遍graph,所以打印的txt_data是b文件的内容。

此时,进入第二轮循环:

当执行key_data = sess.run(key),处理完第三个文件c.txt。

当执行txt_data = sess.run(value)时,触发文件队列结束异常,跳出循环,结束代码执行。

 

 

 

 

 

 

 

 

 

你可能感兴趣的:(【甘道夫】tensorflow的session.run运行一个op和多个op的区别)