tensorflow GPU小测试

tensorflow GPU小测试

2019.01.18补充:这个例子不具有代表性,涉及到卷积运算的时候,GPU的加速效果会体现得比较明显。

简单测试了一下tensorflow的GPU计算和CPU计算的区别。这里的计算例子只非常简单的小规模矩阵相乘,但是也体现出了CPU和GPU算力的差距,代码及结果如下:

import tensorflow as tf
import datetime
#running
# Creates a graph.(cpu version)
print('cpu version')
starttime1 = datetime.datetime.now()
with tf.device('/gpu:0'):
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0,1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[6, 9], name='a')
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0,1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[9, 6], name='b')
  c = tf.matmul(a, b)
  c = tf.matmul(c,a)
  c = tf.matmul(c,b)
# Creates a session with log_device_placement set to True.
sess1 = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
for i in range(59999):
    sess1.run(c)
print(sess1.run(c))
sess1.close()
endtime1 = datetime.datetime.now()
time1 = (endtime1 - starttime1).microseconds
#print('time1:',time1)
#############################################
print('gpuversion')
# Creates a graph.(gpu version)
starttime2 = datetime.datetime.now()
#running
with tf.device('/gpu:0'):
  a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0,1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[6, 9], name='a')
  b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0,1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[9, 6], name='b')
  c = tf.matmul(a, b)
  c = tf.matmul(c,a)
  c = tf.matmul(c,b)
# Creates a session with log_device_placement set to True.
sess2 = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
for i in range(59999):
    sess2.run(c)
print(sess2.run(c))
sess2.close()
endtime2 = datetime.datetime.now()
time2 = (endtime2 - starttime2).microseconds
print('time1:',time1)
print('time2:',time2)

结果如下:

cpu version
[[  18225.   36450.   54675.   72900.   91125.  109350.]
 [  24300.   48600.   72900.   97200.  121500.  145800.]
 [  18225.   36450.   54675.   72900.   91125.  109350.]
 [  24300.   48600.   72900.   97200.  121500.  145800.]
 [  18225.   36450.   54675.   72900.   91125.  109350.]
 [  24300.   48600.   72900.   97200.  121500.  145800.]]
gpuversion
[[  18225.   36450.   54675.   72900.   91125.  109350.]
 [  24300.   48600.   72900.   97200.  121500.  145800.]
 [  18225.   36450.   54675.   72900.   91125.  109350.]
 [  24300.   48600.   72900.   97200.  121500.  145800.]
 [  18225.   36450.   54675.   72900.   91125.  109350.]
 [  24300.   48600.   72900.   97200.  121500.  145800.]]
time1: 356158
time2: 363249

注:以上时间单位是微秒

你可能感兴趣的:(python,tensorflow,gpu,tensorflow,测试)