1.paper列表
Github上面有写好的这几个版本的python实现:
https://github.com/soeaver/caffe-model
https://github.com/titu1994/Inception-v4
Aggregated ResidualTransformations for Deep Neural Networks
这篇提出了resnet的升级版。ResNeXt,the next dimension的意思,因为文中提出了另外一种维度cardinality,和channel和space的维度不同,cardinality维度主要表示ResNeXt中module的个数,最终结论
(1)增大Cardinality比增大模型的width或者depth效果更好
(2)与 ResNet 相比,ResNeXt 参数更少,效果更好,结构更加简单,更方便设计
其中,左图为ResNet的一个module,右图为ResNeXt的一个module,是一种split-transform-merge的思想
Xception: DeepLearning with Depthwise Separable Convolutions
这篇文章主要在Inception V3的基础上提出了Xception(Extreme Inception),基本思想就是通道分离式卷积(depthwise separable convolution operation)。最终实现了
(1)模型参数有微量的减少,减少量很少,具体如下,
(2)精度较Inception V3有提高,ImageNET上的精度如下,
先说,卷积的操作,主要进行2种变换,
(1)spatial dimensions,空间变换
(2)channel dimension,通道变换
而Xception就是在这2个变换上做文章。Xception与Inception V3的区别如下:
(1)卷积操作顺序的区别
Inception V3是先做1*1的卷积,再做3*3的卷积,这样就先将通道进行了合并,即通道卷积,然后再进行空间卷积,而Xception则正好相反,先进行空间的3*3卷积,再进行通道的1*1卷积。
(2)RELU的有无
这个区别是最不一样的,Inception V3在每个module中都有RELU操作,而Xception在每个module中是没有RELU操作的。
MobileNets: EfficientConvolutional Neural Networks for Mobile Vision Applications
MobileNets其实就是Exception思想的应用。区别就是Exception文章重点在提高精度,而MobileNets重点在压缩模型,同时保证精度。
depthwiseseparable convolutions的思想就是,分解一个标准的卷积为一个depthwise convolutions和一个pointwise convolution。简单理解就是矩阵的因式分解。
传统卷积和深度分离卷积的区别如下,
假设,输入的feature map大小为DF * DF,维度为M,滤波器的大小为DK * DK,维度为N,并且假设padding为1,stride为1。则,
原始的卷积操作,需要进行的矩阵运算次数为DK · DK · M · N · DF · DF,卷积核参数为DK · DK · N
depthwise separable convolutions需要进行的矩阵运算次数为DK · DK ·M · DF · DF + M · N · DF · DF,卷积核参数为DK · DK · M+N
由于卷积的过程,主要是一个spatial dimensions减少,channel dimension增加的过程,即N>M,所以,DK · DK · N> DK · DK · M+N。
因此,depthwiseseparable convolutions在模型大小上和模型计算量上都进行了大量的压缩,使得模型速度快,计算开销少,准确性好。如下图所示,其中,横轴MACS表示加法和乘法的计算量(Multiply-Accumulates),纵轴为准确性。
depthwise separable convolutions在caffe中,主要通过卷积层中group操作实现,base_line模型大小大概为16M。
ShuffleNet: AnExtremely Efficient Convolutional Neural Network for Mobile Devices
这篇文章在mobileNet的基础上主要做了1点改进:
mobileNet只做了3*3卷积的deepwiseconvolution,而1*1的卷积还是传统的卷积方式,还存在大量冗余,ShuffleNet则在此基础上,将1*1卷积做了shuffle和group操作,实现了channel shuffle 和pointwise group convolution操作,最终使得速度和精度都比mobileNet有提升。
如下图所示,
(a)是原始的mobileNet的框架,各个group之间相互没有信息的交流。
(b)将feature map做了shuffle操作
(c)是经过channel shuffle之后的结果。
Shuffle的基本思路如下,假设输入2个group,输出5个group
| group 1 | group 2 |
| 1,2,3,4,5 |6,7,8,9,10 |
转化为矩阵为2*5的矩阵
1 2 3 4 5
6 7 8 9 10
转置矩阵,5*2矩阵
1 6
2 7
3 8
4 9
5 10
摊平矩阵
| group 1 | group 2 | group 3 | group 4 | group 5 |
| 1,6 |2,7 |3,8 |4,9 |5,10 |
ShuffleNet Units 的结构如下,
(a)是一个带depthwiseconvolution (DWConv)的bottleneck unit
(b)在(a)的基础上,进行了pointwisegroup convolution (GConv) and channel shuffle
(c)进行了AVG pooling和concat操作的最终ShuffleNetunit
references:
http://iamaaditya.github.io/2016/03/one-by-one-convolution/
https://github.com/soeaver/caffe-model
https://github.com/facebookresearch/ResNeXt
https://github.com/kwotsin/TensorFlow-Xception
https://github.com/shicai/MobileNet-Caffe https://github.com/shicai/MobileNet-Caffe
https://github.com/tensorflow/models/blob/master/slim/nets/mobilenet_v1.md
https://github.com/HolmesShuan/ShuffleNet-An-Extremely-Efficient-CNN-for-Mobile-Devices-Caffe-Reimplementation
https://github.com/camel007/Caffe-ShuffleNet