numpy
包为 Python 提供了高性能的向量,矩阵以及高阶数据结构。由于它们是由 C 和 Fortran 实现的,所以在操作向量与矩阵时性能非常优越。
无需密码自动登录,系统用户名shiyanlou
本课程实验环境使用Spyder。首先打开terminal,然后输入以下命令:
spyder -w scientific-python-lectures (-w 参数指定工作目录)
关于Spyder的使用可参考文档:https://pythonhosted.org/spyder/
本实验基本在控制台下进行,可关闭 spyder 中的其余窗口,只保留控制台。如需要调出窗口,可以通过 view->windows and toolbar 调出。比如希望在py文件中编写代码,可以 view->windows and toolbar->Editor 调出编辑器窗口。
让我们首先加载包
from numpy import *
在 numpy
包中我们用数组来表示向量,矩阵和高阶数据结构。
numpy
数组初始化numpy数组有多种方式,比如说:
arange
, linspace
等函数numpy
数组我们使用 numpy.array
来创建数组
# a vector: the argument to the array function is a Python list
v = array([1,2,3,4])
v
=> array([1, 2, 3, 4])
(注:=> 后为控制台输出结果)
# a matrix: the argument to the array function is a nested Python list
M = array([[1, 2], [3, 4]])
M
=> array([[1, 2],
[3, 4]])
v 与 M 对象都是 numpy 模块提供的 ndarray 类型
type(v), type(M)
=> (,)
v
与 M
数组的不同之处在于它们的维度。 我们可以通过 ndarray.shape
获得它的维度属性:
v.shape
=> (4,)
M.shape
=> (2, 2)
数组的元素数量可以通过 ndarray.size
得到:
M.size
=> 4
同样的,我们可以使用 numpy.shape
与 numpy.size
函数获取对应属性值:
shape(M)
=> (2, 2)
size(M)
=> 4
到目前为止 numpy.ndarray
看上去与 list 差不多。 为什么不直接使用list呢?
原因有以下几点:
使用 ndarray
的 dtype
属性我们能获得数组元素的类型:
M.dtype
=> dtype('int64')
当我们试图为一个 numpy 数组赋错误类型的值的时候会报错:
M[0,0] = "hello"
=> Traceback (most recent call last):
File "", line 1, in
M[0,0] = "hello"
ValueError: invalid literal for long() with base 10: 'hello'
我们可以显示地定义元素类型通过在创建数组时使用 dtype
关键字参数:
M = array([[1, 2], [3, 4]], dtype=complex)
M
=> array([[ 1.+0.j, 2.+0.j],
[ 3.+0.j, 4.+0.j]])
dtype
的常用值有:int
, float
, complex
, bool
, object
等。
我们也可以显示的定义数据类型的大小,比如:int64
, int16
, float128
, complex128
.
当需要生产大数组时,手动创建显然是不明智的,我们可以使用函数来生成数组,最常用的有如下几个函数:
# create a range
x = arange(0, 10, 1) # arguments: start, stop, step
x
=> array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
x = arange(-1, 1, 0.1)
x
=>array([ -1.00000000e+00, -9.00000000e-01, -8.00000000e-01,
-7.00000000e-01, -6.00000000e-01, -5.00000000e-01,
-4.00000000e-01, -3.00000000e-01, -2.00000000e-01,
-1.00000000e-01, -2.22044605e-16, 1.00000000e-01,
2.00000000e-01, 3.00000000e-01, 4.00000000e-01,
5.00000000e-01, 6.00000000e-01, 7.00000000e-01,
8.00000000e-01, 9.00000000e-01])
# using linspace, both end points ARE included
linspace(0, 10, 25)
=> array([ 0. , 0.41666667, 0.83333333, 1.25 ,
1.66666667, 2.08333333, 2.5 , 2.91666667,
3.33333333, 3.75 , 4.16666667, 4.58333333,
5. , 5.41666667, 5.83333333, 6.25 ,
6.66666667, 7.08333333, 7.5 , 7.91666667,
8.33333333, 8.75 , 9.16666667, 9.58333333, 10. ])
logspace(0, 10, 10, base=e)
=> array([ 1.00000000e+00, 3.03773178e+00, 9.22781435e+00,
2.80316249e+01, 8.51525577e+01, 2.58670631e+02,
7.85771994e+02, 2.38696456e+03, 7.25095809e+03,
2.20264658e+04])
x, y = mgrid[0:5, 0:5] # similar to meshgrid in MATLAB
x
=> array([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]])
y
=> array([[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]])
from numpy import random
# uniform random numbers in [0,1]
random.rand(5,5)
=> array([[ 0.30550798, 0.91803791, 0.93239421, 0.28751598, 0.04860825],
[ 0.45066196, 0.76661561, 0.52674476, 0.8059357 , 0.1117966 ],
[ 0.05369232, 0.48848972, 0.74334693, 0.71935866, 0.35233569],
[ 0.13872424, 0.58346613, 0.37483754, 0.59727255, 0.38859949],
[ 0.29037136, 0.8360109 , 0.63105782, 0.58906755, 0.64758577]])
# standard normal distributed random numbers
random.randn(5,5)
=> array([[ 0.28795069, -0.35938689, -0.31555872, 0.48542156, 0.26751156],
[ 2.13568908, 0.85288911, -0.70587016, 0.98492216, -0.99610179],
[ 0.49670578, -0.08179433, 0.58322716, -0.21797477, -1.16777687],
[-0.3343575 , 0.20369114, -0.31390896, 0.3598063 , 0.36981814],
[ 0.4876012 , 1.9979494 , 0.75177876, -1.80697478, 1.64068423]])
# a diagonal matrix
diag([1,2,3])
=> array([[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
# diagonal with offset from the main diagonal
diag([1,2,3], k=1)
=> array([[0, 1, 0, 0],
[0, 0, 2, 0],
[0, 0, 0, 3],
[0, 0, 0, 0]])
zeros((3,3))
=> array([[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]])
ones((3,3))
=> array([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]])
CSV是一种常用的数据格式化文件类型,为了从中读取数据,我们使用 numpy.genfromtxt
函数。
数据文件 stockholm_td_adj.dat 就在工作目录下,文件格式如下:
!head stockholm_td_adj.dat
1800 1 1 -6.1 -6.1 -6.1 1
1800 1 2 -15.4 -15.4 -15.4 1
1800 1 3 -15.0 -15.0 -15.0 1
1800 1 4 -19.3 -19.3 -19.3 1
1800 1 5 -16.8 -16.8 -16.8 1
1800 1 6 -11.4 -11.4 -11.4 1
1800 1 7 -7.6 -7.6 -7.6 1
1800 1 8 -7.1 -7.1 -7.1 1
1800 1 9 -10.1 -10.1 -10.1 1
1800 1 10 -9.5 -9.5 -9.5 1
可视化数据(可视化的内容在matplotlib章节中,这里先小小演示下):
%matplotlib inline
import matplotlib.pyplot as plt
data = genfromtxt('stockholm_td_adj.dat')
data.shape
=> (77431, 7)
fig, ax = plt.subplots(figsize=(14,4))
ax.plot(data[:,0]+data[:,1]/12.0+data[:,2]/365, data[:,5])
ax.axis('tight')
ax.set_title('temperatures in Stockholm')
ax.set_xlabel('year')
ax.set_ylabel('temperature (C)')
fig
使用 numpy.savetxt
我们可以将 Numpy 数组保存到csv文件中:
M = random.rand(3,3)
M
=> array([[ 0.70506801, 0.54618952, 0.31039856],
[ 0.26640475, 0.10358152, 0.73231132],
[ 0.07987128, 0.34462854, 0.91114433]])
savetxt("random-matrix.csv", M)
!cat random-matrix.csv
=> 7.050680113576863750e-01 5.461895177867910345e-01 3.103985627238065037e-01
2.664047486311884594e-01 1.035815249084012235e-01 7.323113219935466489e-01
7.987128326702574999e-02 3.446285401590922781e-01 9.111443300153220237e-01
savetxt("random-matrix.csv", M, fmt='%.5f') # fmt specifies the format
!cat random-matrix.csv
=> 0.70507 0.54619 0.31040
0.26640 0.10358 0.73231
0.07987 0.34463 0.91114
使用 numpy.save
与 numpy.load
保存和读取:
save("random-matrix.npy", M)
!file random-matrix.npy
=> random-matrix.npy: data
load("random-matrix.npy")
=> array([[ 0.70506801, 0.54618952, 0.31039856],
[ 0.26640475, 0.10358152, 0.73231132],
[ 0.07987128, 0.34462854, 0.91114433]])
M.itemsize # bytes per element
=> 8
M.nbytes # number of bytes
=> 72
M.ndim # number of dimensions
=> 2
最基本的,我们用方括号进行检索:
# v is a vector, and has only one dimension, taking one index
v[0]
=> 1
# M is a matrix, or a 2 dimensional array, taking two indices
M[1,1]
=> 0.10358152490840122
如果是N(N > 1)维数列,而我们在检索时省略了一个索引值则会返回一整行((N-1)维数列):
M
=> array([[ 0.70506801, 0.54618952, 0.31039856],
[ 0.26640475, 0.10358152, 0.73231132],
[ 0.07987128, 0.34462854, 0.91114433]])
M[1]
=> array([ 0.26640475, 0.10358152, 0.73231132])
使用 :
能达到同样的效果:
M[1,:] # row 1
=> array([ 0.26640475, 0.10358152, 0.73231132])
M[:,1] # column 1
=> array([ 0.54618952, 0.10358152, 0.34462854])
我们可以利用索引进行赋值:
M[0,0] = 1
M
=> array([[ 1. , 0.54618952, 0.31039856],
[ 0.26640475, 0.10358152, 0.73231132],
[ 0.07987128, 0.34462854, 0.91114433]])
# also works for rows and columns
M[1,:] = 0
M[:,2] = -1
M
=> array([[ 1. , 0.54618952, -1. ],
[ 0. , 0. , -1. ],
[ 0.07987128, 0.34462854, -1. ]])
切片索引语法:M[lower:upper:step]
A = array([1,2,3,4,5])
A
=> array([1, 2, 3, 4, 5])
A[1:3]
=> array([2, 3])
进行切片赋值时,原数组会被修改:
A[1:3] = [-2,-3]
A
=> array([ 1, -2, -3, 4, 5])
我们可以省略 M[lower:upper:step]
中的任意参数:
A[::] # lower, upper, step all take the default values
=> array([ 1, -2, -3, 4, 5])
A[::2] # step is 2, lower and upper defaults to the beginning and end of the array
=> array([ 1, -3, 5])
A[:3] # first three elements
=> array([ 1, -2, -3])
A[3:] # elements from index 3
=> array([4, 5])
负值索引从数组尾开始计算:
A = array([1,2,3,4,5])
A[-1] # the last element in the array
=> 5
A[-3:] # the last three elements
=> array([3, 4, 5])
索引切片在多维数组的应用也是一样的:
A = array([[n+m*10 for n in range(5)] for m in range(5)])
A
=> array([[ 0, 1, 2, 3, 4],
[10, 11, 12, 13, 14],
[20, 21, 22, 23, 24],
[30, 31, 32, 33, 34],
[40, 41, 42, 43, 44]])
# a block from the original array
A[1:4, 1:4]
=> array([[11, 12, 13],
[21, 22, 23],
[31, 32, 33]])
# strides
A[::2, ::2]
=> array([[ 0, 2, 4],
[20, 22, 24],
[40, 42, 44]])
指使用列表或者数组进行索引:
row_indices = [1, 2, 3]
A[row_indices]
=> array([[10, 11, 12, 13, 14],
[20, 21, 22, 23, 24],
[30, 31, 32, 33, 34]])
col_indices = [1, 2, -1] # remember, index -1 means the last element
A[row_indices, col_indices]
=> array([11, 22, 34])
我们也可以使用索引掩码:
B = array([n for n in range(5)])
B
=> array([0, 1, 2, 3, 4])
row_mask = array([True, False, True, False, False])
B[row_mask]
=> array([0, 2])
# same thing
row_mask = array([1,0,1,0,0], dtype=bool)
B[row_mask]
=> array([0, 2])
使用比较操作符生成掩码:
x = arange(0, 10, 0.5)
x
=> array([ 0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. ,
5.5, 6. , 6.5, 7. , 7.5, 8. , 8.5, 9. , 9.5])
mask = (5 < x) * (x < 7.5)
mask
=> array([False, False, False, False, False, False, False, False, False,
False, False, True, True, True, True, False, False, False,
False, False], dtype=bool)
x[mask]
=> array([ 5.5, 6. , 6.5, 7. ])