一些标准信号

NAME

signal - 有效信号的清单

描述 (DESCRIPTION)

下面 列出 Linux 支持的 信号. 某些 信号 依赖于 体系结构(architecture).

首先, POSIX.1 描述了 下列 信号.

信号 动作 说明
 




SIGINT  2 A 从键盘输入的中断
 
SIGQUIT  3 C 从键盘输入的退出
 
SIGILL  4 C 无效硬件指令
 
SIGABRT  6 C 非正常终止, 可能来自 abort(3)
 
SIGFPE  8 C 浮点运算例外
 
SIGKILL  9 AEF 杀死进程信号
 
SIGSEGV 11 C 无效的内存引用
 
SIGPIPE 13 A 管道中止: 写入无人读取的管道
 
SIGALRM 14 A 来自 alarm(2) 的超时信号
 
SIGTERM 15 A 终止信号
 
SIGUSR1 30,10,16 A 用户定义的信号 1
 
SIGUSR2 31,12,17 A 用户定义的信号 2
 
SIGCHLD 20,17,18 B 子进程结束或停止
 
SIGCONT 19,18,25   继续停止的进程
 
SIGSTOP 17,19,23 DEF 停止进程
 
SIGTSTP 18,20,24 D 终端上发出的停止信号
 
SIGTTIN 21,21,26 D 后台进程试图从控制终端(tty)输入
 
SIGTTOU 22,22,27 D 后台进程试图在控制终端(tty)输出
 

下面的 信号 定义 在 SUSv2 中, 而 POSIX.1 没有 定义.

信号 动作 说明
 




SIGPOLL   A I/O就绪事件 (Sys V). 等同于SIGIO
 
SIGPROF 27,27,29 A 系统资源定时器(Profiling timer)超时 
 
SIGSYS 12,-,12 C 用错误参数调用系统例程 (SVID)
 
SIGTRAP 5 C 跟踪/断点自陷
 
SIGURG 16,23,21 B 套接口上出现 urgent 情况 (4.2 BSD)
 
SIGVTALRM 26,26,28 A 虚拟超时时钟 (4.2 BSD)
 
SIGXCPU 24,24,30 C 超过了CPU时间限制 (4.2 BSD)
 
SIGXFSZ 25,25,31 C 超过了文件大小限制 (4.2 BSD)
 

(这里的 SIGSYS, SIGXCPU, SIGXFSZ, 以及 某些 系统上 的 SIGBUS, Linux 的 缺省动作 (到2.3.27版) 是 A(结束), 而 SUSv2 声明是 C(结束且核心转储).)

下面 是 其他 几个 信号.

信号 动作 说明
 




SIGEMT 7,-,7  
 
SIGSTKFLT -,16,- A 协处理器堆栈错误
 
SIGIO 23,29,22 A I/O 有效信号 (4.2 BSD)
 
SIGCLD -,-,18   等同于 SIGCHLD
 
SIGPWR 29,30,19 A 电源无效 (System V)
 
SIGINFO 29,-,-   等同于 SIGPWR
 
SIGLOST -,-,- A 文件锁丢失
 
SIGWINCH 28,28,20 B 窗口大小调整信号 (4.3 BSD, Sun)
 
SIGUNUSED -,31,- A 未使用的信号 (将成为 SIGSYS)
 

这里的 - 指 信号 不存在; 可能 给出 三个值, 第一个值 一般 用于 alpha 和 sparc, 中间的值 用于 i386, ppc 和 sh, 最后一个 是 mips 的. 信号29 在 alpha机上 是 SIGINFO/ SIGPWR , 而在 sparc机上 是 SIGLOST

"动作(Action)"栏 的 字母 有 下列 含义:

A
缺省动作是结束进程.
B
缺省动作是忽略这个信号.
C
缺省动作是结束进程, 并且核心转储.
D
缺省动作是停止进程.
E
信号不能被捕获.
F
信号不能被忽略.

(译注: 这里 "结束" 指 进程 终止 并 释放资源, "停止" 指 进程 停止 运行, 但是 资源 没有 释放, 有可能 继续 运行.)

遵循 (CONFORMING TO)

POSIX.1

BUGS

SIGIO  SIGLOST 有 相同的 值. 后者 在 内核 源码 中 被注释 掉了, 但是 某些 软件 构造的 进程 仍然 认为 信号29 是 SIGLOST.

另见 (SEE ALSO)

kill(1), kill(2), setitimer(2)

NAME

signal - list of available signals  

DESCRIPTION

Linux supports both POSIX reliable signals (hereinafter "standard signals") and POSIX real-time signals.  

Standard Signals

Linux supports the standard signals listed below. Several signal numbers are architecture dependent, as indicated in the "Value" column. (Where three values are given, the first one is usually valid for alpha and sparc, the middle one for i386, ppc and sh, and the last one for mips. A - denotes that a signal is absent on the corresponding architecture.)

The entries in the "Action" column of the table specify the default action for the signal, as follows:

Term
Default action is to terminate the process.
Ign
Default action is to ignore the signal.
Core
Default action is to terminate the process and dump core.
Stop
Default action is to stop the process.

First the signals described in the original POSIX.1 standard.

Signal Value Action Comment
 




      or death of controlling process
 
SIGINT  2 Term Interrupt from keyboard
 
SIGQUIT  3 Core Quit from keyboard
 
SIGILL  4 Core Illegal Instruction
 
SIGABRT  6 Core Abort signal from abort(3)
 
SIGFPE  8 Core Floating point exception
 
SIGKILL  9 Term Kill signal
 
SIGSEGV 11 Core Invalid memory reference
 
SIGPIPE 13 Term Broken pipe: write to pipe with no readers
 
SIGALRM 14 Term Timer signal from alarm(2)
 
SIGTERM 15 Term Termination signal
 
SIGUSR1 30,10,16 Term User-defined signal 1
 
SIGUSR2 31,12,17 Term User-defined signal 2
 
SIGCHLD 20,17,18 Ign Child stopped or terminated
 
SIGCONT 19,18,25   Continue if stopped
 
SIGSTOP 17,19,23 Stop Stop process
 
SIGTSTP 18,20,24 Stop Stop typed at tty
 
SIGTTIN 21,21,26 Stop tty input for background process
 
SIGTTOU 22,22,27 Stop tty output for background process
 

The signals SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.

Next the signals not in the POSIX.1 standard but described in SUSv2 and SUSv3 / POSIX 1003.1-2001.

Signal Value Action Comment
 




SIGPOLL   Term Pollable event (Sys V). Synonym of SIGIO
 
SIGPROF 27,27,29 Term Profiling timer expired
 
SIGSYS 12,-,12 Core Bad argument to routine (SVID)
 
SIGTRAP 5 Core Trace/breakpoint trap
 
SIGURG 16,23,21 Ign Urgent condition on socket (4.2 BSD)
 
SIGVTALRM 26,26,28 Term Virtual alarm clock (4.2 BSD)
 
SIGXCPU 24,24,30 Core CPU time limit exceeded (4.2 BSD)
 
SIGXFSZ 25,25,31 Core File size limit exceeded (4.2 BSD)
 

Up to and including Linux 2.2, the default behaviour for SIGSYS, SIGXCPU,SIGXFSZ, and (on architectures other than SPARC and MIPS) SIGBUS was to terminate the process (without a core dump). (On some other Unices the default action forSIGXCPU and SIGXFSZ is to terminate the process without a core dump.) Linux 2.4 conforms to the POSIX 1003.1-2001 requirements for these signals, terminating the process with a core dump.

Next various other signals.

Signal Value Action Comment
 




SIGEMT 7,-,7 Term
 
SIGSTKFLT -,16,- Term Stack fault on coprocessor (unused)
 
SIGIO 23,29,22 Term I/O now possible (4.2 BSD)
 
SIGCLD -,-,18 Ign A synonym for SIGCHLD
 
SIGPWR 29,30,19 Term Power failure (System V)
 
SIGINFO 29,-,-   A synonym for SIGPWR
 
SIGLOST -,-,- Term File lock lost
 
SIGWINCH 28,28,20 Ign Window resize signal (4.3 BSD, Sun)
 
SIGUNUSED -,31,- Term Unused signal (will be SIGSYS)
 

(Signal 29 is SIGINFO / SIGPWR on an alpha but SIGLOST on a sparc.)

SIGEMT is not specified in POSIX 1003.1-2001, but neverthless appears on most other Unices, where its default action is typically to terminate the process with a core dump.

SIGPWR (which is not specified in POSIX 1003.1-2001) is typically ignored by default on those other Unices where it appears.

SIGIO (which is not specified in POSIX 1003.1-2001) is ignored by default on several other Unices.  

Real-time Signals

Linux supports real-time signals as originally defined in the POSIX.4 real-time extensions (and now included in POSIX 1003.1-2001). Linux supports 32 real-time signals, numbered from 32 (SIGRTMIN) to 63 (SIGRTMAX). (Programs should always refer to real-time signals using notation SIGRTMIN+n, since the range of real-time signal numbers varies across Unices.)

Unlike standard signals, real-time signals have no predefined meanings: the entire set of real-time signals can be used for application-defined purposes. (Note, however, that the LinuxThreads implementation uses the first three real-time signals.)

The default action for an unhandled real-time signal is to terminate the receiving process.

Real-time signals are distinguished by the following:

1.
Multiple instances of real-time signals can be queued. By contrast, if multiple instances of a standard signal are delivered while that signal is currently blocked, then only one instance is queued.
2.
If the signal is sent using   sigqueue(2), an accompanying value (either an integer or a pointer) can be sent with the signal. If the receiving process establishes a handler for this signal using the   SA_SIGACTION  flag to   sigaction(2) then it can obtain this data via the   si_value  field of the   siginfo_t  structure passed as the second argument to the handler. Furthermore, the   si_pid  and   si_uid  fields of this structure can be used to obtain the PID and real user ID of the process sending the signal.
3.
Real-time signals are delivered in a guaranteed order. Multiple real-time signals of the same type are delivered in the order they were sent. If different real-time signals are sent to a process, they are delivered starting with the lowest-numbered signal. (I.e., low-numbered signals have highest priority.)

If both standard and real-time signals are pending for a process, POSIX leaves it unspecified which is delivered first. Linux, like many other implementations, gives priority to standard signals in this case.

According to POSIX, an implementation should permit at least _POSIX_SIGQUEUE_MAX (32) real-time signals to be queued to a process. However, rather than placing a per-process limit, Linux imposes a system-wide limit on the number of queued real-time signals for all processes. This limit can be viewed and (with privilege) changed via the /proc/sys/kernel/rtsig-max file. A related file,/proc/sys/kernel/rtsig-nr, can be used to find out how many real-time signals are currently queued.  

CONFORMING TO

 

你可能感兴趣的:(Kernel)