ThreadPoolExecutor的addWorker方法
【Java线程池01】Java线程池简介
此文中对Java线程池简介,包含线程池相关的几个类的关系等。
【Java线程池02】ThreadPoolExecutor类概述
此文介绍了ThreadPoolExecutor的构造函数、核心字段以及核心方法
【Java线程池03】ThreadPoolExecutor的execute方法执行流程
此文介绍了ThreadPoolExecutor的核心方法execute的逻辑。
源码比较长,看起来比较唬人,其实就做了两件事。1)才用循环CAS操作来将线程数加1;2)新建一个线程并启用。
private boolean addWorker(Runnable firstTask, boolean core) {
//(1)循环CAS操作,将线程池中的线程数+1.
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
//core true代表是往核心线程池中增加线程 false代表往最大线程池中增加线程
//线程数超标,不能再添加了,直接返回
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
//CAS修改clt的值+1,在线程池中为将要添加的线程流出空间,成功退出cas循环,失败继续
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
//如果线程池的状态发生了变化回到retry外层循环
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
//(2)新建线程,并加入到线程池workers中。
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
//对workers操作要通过加锁来实现
final ReentrantLock mainLock = this.mainLock;
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
//细化锁的力度,防止临界区过大,浪费时间
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int c = ctl.get();
int rs = runStateOf(c);
//判断线程池的状态
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
//判断添加的任务状态,如果已经开始丢出异常
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
//将新建的线程加入到线程池中
workers.add(w);
int s = workers.size();
//修正largestPoolSize的值
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
//线程添加线程池成功,则开启新创建的线程
if (workerAdded) {
t.start();//(3)
workerStarted = true;
}
}
} finally {
//线程添加线程池失败或者线程start失败,则需要调用addWorkerFailed函数,
//如果添加成功则需要移除,并回复clt的值
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
继承自AQS,具有锁的功能,实现了Runable接口,具有线程的功能。
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L;
//线程池中正真运行的线程。通过我们指定的线程工厂创建而来
final Thread thread;
//线程包装的任务。thread 在run时主要调用了该任务的run方法
Runnable firstTask;
//记录当前线程完成的任务数
volatile long completedTasks;
/**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
//利用我们指定的线程工厂创建一个线程
this.thread = getThreadFactory().newThread(this);
}
/** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);
}
由源码可知,Worker类的run方法实际上调用的还是ThreadPoolExecutor的runworker方法。下面将看一下ThreadPoolExecutor的runworker源代码和注释解析。
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
//线程池处于stop状态或者当前线程被中断时,线程池状态是stop状态。
//但是当前线程没有中断,则发出中断请求
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted()) {
wt.interrupt();
}
try {
//开始执行任务前的Hook,类似回调函数
beforeExecute(wt, task);
Throwable thrown = null;
try {
//执行任务
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
//任务执行后的Hook,类似回调函数
afterExecute(task, thrown);
}
} finally {
//执行完毕后task重置,completedTasks计数器++,解锁
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
//线程空闲达到我们设定的值时,Worker退出销毁。
processWorkerExit(w, completedAbruptly);
}
}
大概意思就是当前任务不为null或者从队列中取的任务不为null时,worker线程就一直去执行任务。当无要执行的任务时,尝试回收线程。
runWorker函数中最重要的是getTask(),他不断的从阻塞队列中取任务交给线程执行。下面分析一下:
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
//如果线程池处于shutdown状态,
//并且队列为空,或者线程池处于stop或者terminate状态,
//在线程池数量-1,返回null,回收线程
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
//标识当前线程在空闲时,是否应该超时回收
boolean timed;
for (;;) {
int wc = workerCountOf(c);
//如果allowCoreThreadTimeOut 为ture
//或者当前线程数量大于核心线程池数目,
//则需要超时回收
timed = allowCoreThreadTimeOut || wc > corePoolSize;
//(1)
//如果线程数目小于最大线程数目,
//且不允许超时回收或者未超时,
//则跳出循环,继续去阻塞队列中取任务(2)
if (wc <= maximumPoolSize && ! (timedOut && timed))
break;
//如果上面if没有成立,则当前线程数-1,返回null,回收该线程
if (compareAndDecrementWorkerCount(c))
return null;
//如果上面if没有成立,则CAS修改ctl失败,重读,cas循环重新尝试修改
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
(2)
try {
//如果允许空闲回收,则调用阻塞队列的poll,
//否则take,一直等到队列中有可取任务
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
//取到任务,返回任务,
//否则超时timedOut = true;进入下一个循环,
//并且在(1)处会不成立,进而进入到cas修改ctl的程序中
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}