- Python_NumPy——入门学习(numpy基本操作)
初次知晓
Python学习pythonnumpy学习
作者:初次知晓邮箱:
[email protected]笔记分享:百度网盘分享链接百度云盘链接:https://pan.baidu.com/s/1VXHLlMsRvrzcY0d6W0LPsA?pwd=b8m1提取码:b8m1本人为中职在读学生,博客内容或有错误,我愿意接受并吸取任何人的意见学习来源参考以下网站或视频:菜鸟教程,千锋教育系列视频,黑马程序员系列视频目录Numpy的索引操
- python_numpy库_ndarray的聚合操作、矩阵操作等
蜀道之南718
numpypython矩阵
一、ndarray的聚合操作1、求和np.sum()importnumpyasnpn=np.arange(10)print(n)s=np.sum(n)print(s)n=np.random.randint(0,10,size=(3,5))print(n)s1=np.sum(n)print(s1) #全部数加起来s2=np.sum(n,axis=0)print(s2) #表示每一列的多行求和s
- python_numpy库_ndarray的创建
蜀道之南718
numpypython开发语言
目录1、使用np.array()创建2、使用np的routines函数创建(1)、np.ones(shape,dtype=None,order='C')(2)、np.zeros(shape,dtype=float,order='C')(3)、np.full(shape,fill_value,dtype=None,order='C')(4)、np.eye(N,M=None,k=0,dtype=flo
- python_numpy库_ndarray的属性
蜀道之南718
pythonnumpy开发语言
目录1、ndim(维度)2、shape(形状)3、size(总长度)4、dtype(元素类型)1、ndim(维度)n=np.random.rand(3,4)print(n)w=n.ndimprint(w)2、shape(形状)*三个数字分别表示各个维度的长度n=np.random.rand(3,4)print(n)w=n.ndimprint(w)x=n.shapeprint(x)3、size(总长
- Python_Numpy库的Ndarray对象有哪些数据类型?数值范围分别为多少?
昊虹AI笔记
Python基础numpy数据类型
Python_Numpy库的Ndarray对象有哪些数据类型?数值范围分别为多少?看下面这张图就知道了:为了方便复制数据类型,文字版如下:bool_布尔型数据类型(True或者False)int_默认的整数类型(类似于C语言中的long,int32或int64)intc与C的int类型一样,一般是int32或int64intp用于索引的整数类型(类似于C的ssize_t,一般情况下仍然是int32
- python_numpy库_ndarray的基本使用
蜀道之南718
pythonnumpy开发语言
1、索引一维和列表索引的操作一致。2、根据索引修改数据(1)、将第二行全部数字改为0.88n=np.random.rand(3,4)print(n)#将第二行全部数字改为0.88n[1]=0.88print(n)(2)、将第二行最后一个数改为0.88a=np.random.rand(3,4)print(a)#将第二行最后一个数改为0.88a[1][3]=0.88print(a)3、切片import
- 【头歌】 —— 数据分析与实践-python_NumPy基础及取值操作-NumPy数组的高级操作-Numpy初体验-亲和性分析——商品推荐
くらんゆうき
【头歌】——数据分析与实践答案数据分析pythonnumpy
【头歌】——数据分析与实践-python_NumPy基础及取值操作-NumPy数组的高级操作-Numpy初体验-亲和性分析——商品推荐Numpy初体验第1关Numpy创建数组第2关Numpy数组的基本运算第3关Numpy数组的切片与索引第4关Numpy数组的堆叠第5关Numpy的拆分NumPy基础及取值操作第1关ndarray对象第2关形状操作第3关基础操作第4关随机数生成第5关索引与切片NumP
- python读书报告_python_Numpy读书报告
weixin_39994461
python读书报告
什么是NumPy?NumPy(NumericalPython)是Python语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。NumPy的前身Numeric最早是由JimHugunin与其它协作者共同开发,2005年,TravisOliphant在Numeric中结合了另一个同性质的程序库Numarray的特色,并加入了其它扩展而开发了NumPy。NumP
- Python_numpy学习随记
Yong2019
numpy的适用基本与matlab类似,尽量采用数组计算,采用循环时间消耗太大(尤其当数组较大时)importnumpyasnpaa=np.random.rand(100,100)numpy数组输出(扩展名.npy,二进制储存)np.save(filename,aa)aa=np.load(filename)#直接读取文件输出txt文档np.savetxt(filename,aa)#最多输出二维数组
- Python_Numpy库中各种矩阵基本运算(加、减、乘、点乘、点除、乘方、转置等)
昊虹AI笔记
python基础图像处理原理工具代码Numpy-矩阵基本运算
Numpy中矩阵基本运算的实现。目录01-两个矩阵相加02-矩阵与标量(常数)相加03-两个矩阵相减04-矩阵与标量(常数)的减法运算05-求矩阵中每个元素的相反数06-矩阵元素乘法(点乘)06-1两种方法实现矩阵元素乘法(点乘)06-2-浮点数和unit8型矩阵做点乘的结果是什么数据类型的矩阵?07-矩阵乘法运算08-矩阵元素乘方运算09-矩阵的元素除法(点除)[也叫真除-结果既有整数部分也有小
- 吴恩达视频-第一门课第2周2.16节-关于 python _ numpy 向量的说明(A note on python or numpy vectors)
越努力越幸运@
深度学习PythonNumpypython矩阵开发语言
2.16关于python_numpy向量的说明(Anoteonpythonornumpyvectors)参考视频:本节主要讲Python中的numpy一维数组的特性,以及与行向量或列向量的区别。并介绍了老师在实际应用中的一些小技巧,去避免在coding中由于这些特性而导致的bug。Python的特性允许你使用广播(broadcasting)功能,这是Python的numpy程序语言库中最灵活的地方
- 吴恩达深度学习第一门课第二周:神经网络的编程基础
老干妈拌士力架
深度学习深度学习神经网络机器学习
文章目录前言一、二分类二、逻辑回归三、逻辑回归的代价函数四、梯度下降法五、导数六、更多的导数例子七、计算图八、使用计算图求导数九、逻辑回归中的梯度下降十、m个样本的梯度下降十一、向量化十二、向量化的更多例子十三、向量化逻辑回归十四、向量化逻辑回归的梯度输出十五、Python中的广播十六、关于python_numpy向量的说明第二周作业前言吴恩达深度学习第一门课第二周:神经网络的编程基础一、二分类逻
- numpy有什么功能python_Numpy的介绍与基本使用方法
weixin_39624360
1、什么是NumpyNumPy是一个功能强大的Python库,主要用于对多维数组执行计算。NumPy这个词来源于两个单词--Numerical和Python。它是Python生态系统中数据分析、机器学习和科学计算的主力军。它极大地简化了向量和矩阵的操作处理。Python数据科学相关的一些主要软件包(如scikit-learn、SciPy、pandas和tensorflow)都以NumPy作为其架构
- Python_Numpy库的ndarray对象的属性有哪些?如何获取它们的值?
昊虹AI笔记
python基础ndarray
Python_Numpy库的ndarray对象的属性有哪些?如何获取它们的值?Python_Numpy库的ndarray对象的常用属性有如下这些:ndim—矩阵的维度;shape—矩阵的形状;size—矩阵的元素个数;dtype—矩阵元素的数据类型;T-矩阵的转置其它不常用的属性值还有以下这些:buffer—矩阵的数据头;itemsize—每个矩阵元素占用的内存空间;flags—字典类型,显示矩阵
- python_numpy中矩阵的表示方法
qq_30343275
python
np.array[1,2,3,4,]X=np.mat(‘1,2,3,4;4,5,6,7;7,8,9,10’)X=np.mat([[1,2,3,4],[4,5,6,7],[7,8,9,10]])importnumpyasnpW=np.array([1,2,3,4])#X=np.mat('1,2,3,4;4,5,6,7;7,8,9,10')X=np.mat([[1,2,3,4],[4,5,6,7],[
- Python_Numpy
Chung King
Numpynumpy基础概念什么numpy?快速、方便的科学计算基础库(主要是对数值的计算,多维数组的运算);Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nestedliststructure)结构要高效的多(该结构也可以用来表示矩阵(matrix))轴的理解(axis):0轴,1轴,2轴一维数组:[1,2,3,4,5]---->0轴二维数
- python_numpy的矩阵运算及对应的matlab写法
潜水的飞鱼baby
python_numpy
背景:NumPy和Matlab不一样,对于多维数组的运算,缺省情况下并不使用矩阵运算,可以调用相应的函数对数组进行矩阵运算。或者使用numpy库提供了的matrix类,用matrix类创建的是矩阵对象,它们的加减乘除运算缺省采用矩阵方式计算,用法和matlab十分类似。不过一般用户很容易将NumPy中同时存在的ndarray和matrix对象弄混,一般不建议在大程序中使用。下面简单介绍python
- python_numpy
瓦砾
python
Numpy的数组对象ndarray属性属性说明.ndim秩。即轴的数量或维度的数量.shape对象的尺度.size对象元素的个数.dtype对象的元素类型.itemsize对象中每个元素的大小,以字节为单位>>>importnumpyasnp>>>a=np.array([[0,1,2],[3,4,5],[6,7,8]])>>>aarray([[0,1,2],[3,4,5],[6,7,8]])>>>
- python_numpy基础
Kedi
1.矩阵的创建In:a=np.arange(1,5)a=np.array([1,2,3,4,5])printa,a.dtype,a.shape,a.size,a.ndimOut:[1234]np.arange类似range函数np.array用来生成矩阵dtype是数据类型,有int64,complex,uint16等shape是个元组属性,表示每一维的宽度size是所有元素个数ndim是维数li
- python_numpy实用的最小二乘法理解
Kedi
最小二乘法解决的问题:Ax=C无解下的最优解例子1:一条过原点的直线OA,C是直线外一点,求C在OA上的投影点P例子1例子2:已知三个不在一条直线上的点A,B,C,求一条直线,使A,B,C到直线的距离和最小例子2例子3:已知三个不在一条直线上的点A,B,C,求一点,到A,B,C的距离和最小例子3其实这3个例子的本质都是一样的。都是求未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
- Python_Numpy库知识点总结
LimitOut
Python
1.np.arange()用法np.arange()函数返回一个有终点和起点的固定步长的排列,如[1,2,3,4,5],起点是1,终点是5,步长为1。参数个数情况:np.arange()函数分为一个参数,两个参数,三个参数三种情况1)一个参数时,参数值为终点,起点取默认值0,步长取默认值1。2)两个参数时,第一个参数为起点,第二个参数为终点,步长取默认值1。3)三个参数时,第一个参数为起点,第二个
- Python_numpy
三秋树eyh
1.导入包importnumpy#直接导入整个包importnumpyasnp#导入numpy包并且取别名npfromnumpyimportarray#从numpy中单独导入array2.array()把list变为array型的list>>>height=[1.73,1.68,1.71,1.98,1.79]>>>weight=[65.4,59.2,63.6,88.4,68.7]>>>np_hei
- python_numpy最小二乘法的曲线拟合
Kedi
在了解了最小二乘法的基本原理之后python_numpy实用的最小二乘法理解,就可以用最小二乘法做曲线拟合了1.直线拟合直线拟合已知图中拟合数据的坐标,对图中的拟合数据进行直线拟合。依旧使用最小二乘法求解Ax=b——————1无解下的最优解。已知点的个数为n,所求直线的方程为y1=ax1+b,A由方程右边的a,b的系数构成构成(nx2)的矩阵,每行为(x1,1),b由已知点的y1坐标构成矩阵(nx
- 2.16 关于python_numpy向量的说明
透明的红萝卜123
实际上就我在代码中表现的事情而言,我从来不使用一维数组。1、不要使用一维数组。2、总是使用(n,1)维矩阵(基本上是列向量),或者(1,n)维矩阵(基本上是行向量),这样你可以减少很多assert语句来节省核矩阵和数组的维数的时间。3、为了确保你的矩阵或向量所需要的维数时,不要羞于reshape操作。4、关于np.dot()np.multiply()*的区别用法:python中np.multipl
- python_numPy学习
Dl_毛良伟
原文链接numPy维基百科特点NumPy引用CPython(一个使用字节码的解释器),而在这个Python实现解释器上所写的数学算法代码通常远比编译过的相同代码要来得慢。为了解决这个难题,NumPy引入了多维数组以及可以直接有效率地操作多维数组的函数与运算符。因此在NumPy上只要能被表示为针对数组或矩阵运算的算法,其运行效率几乎都可以与编译过的等效C语言代码一样快。[1]NumPy提供了与MAT
- python_numpy,在命令窗口python.exe和python shell中的效果不一样?
xiao_lxl
python
Python下安装numpy遇到问题我的python安装的是2.7版本的,相应的numpy安装的是numpy-1.8.1-win32-superpack-python2.7.exenumpy下载网址为http://sourceforge.net/projects/numpy/files下载后,直接安装在python的安装目录下F:\Python27,执行下一步即可,安装成功后,测试。在python
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不