tensorflow学习笔记(十):sess.run()

session.run([fetch1, fetch2])

关于 session.run([fetch1, fetch2]),请看http://stackoverflow.com/questions/42407611/how-tensorflow-handle-the-computional-graph-when-executing-sess-run/42408368?noredirect=1#comment71994086_42408368

执行sess.run()时,tensorflow是否计算了整个图

我们在编写代码的时候,总是要先定义好整个图,然后才调用sess.run()。那么调用sess.run()的时候,程序是否执行了整个图

import tensorflow as tf
state = tf.Variable(0.0,dtype=tf.float32)
one = tf.constant(1.0,dtype=tf.float32)
new_val = tf.add(state, one)
update = tf.assign(state, new_val) #返回tensor, 值为new_val
update2 = tf.assign(state, 10000)  #没有fetch,便没有执行
init = tf.initialize_all_variables()
with tf.Session() as sess:
    sess.run(init)
    for _ in range(3):
        print sess.run(update)

和上个程序差不多,但我们这次仅仅是fetch “update”,输出是1.0 , 2.0, 3.0,可以看出,tensorflow并没有计算整个图,只是计算了与想要fetch 的值相关的部分

sess.run() 中的feed_dict

我们都知道feed_dict的作用是给使用placeholder创建出来的tensor赋值。其实,他的作用更加广泛:feed 使用一个 值临时替换一个 op 的输出结果. 你可以提供 feed 数据作为 run() 调用的参数. feed 只在调用它的方法内有效, 方法结束, feed 就会消失.

import tensorflow as tf
y = tf.Variable(1)
b = tf.identity(y)
with tf.Session() as sess:
    tf.global_variables_initializer().run()
    print(sess.run(b,feed_dict={y:3})) #使用3 替换掉
    #tf.Variable(1)的输出结果,所以打印出来3 
    #feed_dict{y.name:3} 和上面写法等价

    print(sess.run(b))  #由于feed只在调用他的方法范围内有效,所以这个打印的结果是 1

输出是3 1
参考文献:
[1] tensorflow whitepaper

你可能感兴趣的:(tensorflow,tensorflow学习笔记)