- 【论文阅读方法】沐神课程:如何读论文
晴空对晚照
论文阅读论文阅读
一篇论文的一般结构titleabstractintroductionmethodexperienceconclusion三明治论文阅读法第一遍:海选title+abstract+conclusion——确定要不要读第二遍:精读对整个文章过一遍,知道每一块在做什么可以从标题开始读到最后,注意不用咬文嚼字,不要太细节,公式、证明等很细节的部分可以忽略掉重点弄清楚每一个图表,算法在做什么,x轴y轴每一个
- 论文阅读笔记——QLORA: Efficient Finetuning of Quantized LLMs
寻丶幽风
论文阅读笔记论文阅读笔记人工智能深度学习语言模型
QLoRA论文4-bit标准浮点数量化常见的量化技术是最大绝对值量化:XInt8=round(127absmax(XFP32)XFP32)=round(cFP32,XFP32)式(1)X^{Int8}=round(\frac{127}{absmax(X^{FP32})}X^{FP32})=round(c^{FP32},X^{FP32})\qquad\qquad\text{式(1)}XInt8=ro
- 论文阅读:Personalized Purchase Prediction of Market with Wasserstein-Based Sequence Matching
Narcissus`小暮
一步步来学大数据推荐系统
PersonalizedPurchasePredictionofMarketwithWasserstein-BasedSequenceMatching概述问题背景及陈述预测算法步骤一:itemembeddings步骤二:计算wassersteinDistance步骤三:Wasserstein-BasedDynamicTimeWarping预测实验评价标准数据集对比的baseline结论市场篮子的应
- 论文阅读笔记:Graph Matching Networks for Learning the Similarity of Graph Structured Objects
游离态GLZ不可能是金融技术宅
知识图谱机器学习深度学习人工智能
论文做的是用于图匹配的神经网络研究,作者做出了两点贡献:证明GNN可以经过训练,产生嵌入graph-leve的向量可以用于相似性计算。作者提出了一种新的基于注意力的跨图匹配机制GMN(cross-graphattention-basedmatchingmechanism),来计算出一对图之间的相似度评分。(核心创新点)论文证明了该模型在不同领域的有效性,包括具有挑战性的基于控制流图(control
- 论文阅读 EEG-TCNet
Plan-C-
论文阅读
EEG-TCNet:AnAccurateTemporalConvolutionalNetworkforEmbeddedMotor-ImageryBrain–MachineInterfaces1.Intrduction本文提出了一种新颖的时间卷积网络(TCN),在需要很少的可训练参数的情况下实现了出色的精度。EG-TCNET成功地推广了单个数据集,通过0.25的元效应优于MOABB的当前最新技术水平
- 论文阅读《Semantic Stereo Matching with Pyramid Cost Volumes》
cunese0088
深度学习
SSPCV-Net(语义立体匹配网络)目的:进一步捕捉视差的细节主要模块:数据集:SceneFlow,KITTI2012,KITTI2015,Cityscape(比较泛化能力)-------------------------------------------------------------------------------------------------------Concatevo
- 论文阅读笔记——π0: A Vision-Language-Action Flow Model for General Robot Control
寻丶幽风
论文阅读笔记论文阅读笔记人工智能机器人语言模型
π0论文π0π_0π0是基于预训练的VLM模型增加了actionexpert,并结合了flowmatching方法训练的自回归模型,能够直接输出模型的actionchunk(50)。π0采用FlowMatching技术来建模连续动作的分布,这一创新使模型能够精确控制高频率的灵巧操作任务,同时具备处理多模态数据的能力。架构受到Transfusion的启发:通过单一Transformer处理多目标任务
- 【论文阅读】Learning Transferable Visual Models From Natural Language Supervision(2021)
Bosenya12
论文阅读
摘要State-of-the-art(最先进的)computervisionsystems(计算机视觉系统)aretrainedtopredictafixedsetofpredeterminedobjectcategories(被训练来预测一组固定的预定对象类别).Thisrestrictedformofsupervision(受限制的监督形式)limitstheirgenerality(通用性)
- InternVL:论文阅读 -- 多模态大模型(视觉语言模型)
XiaoJ1234567
LLM论文阅读语言模型人工智能多模态大模型internVL
更多内容:XiaoJ的知识星球文章目录InternVL:扩展视觉基础模型与通用视觉语言任务对齐1.概述2.InternVL整体架构1)大型视觉编码器:InternViT-6B2)语言中间件:QLLaMA。3)训练策略(1)第一阶段:视觉-语言对比训练(2)第二阶段:视觉语言生成训练(3)第三阶段:监督微调(SFT)3.InternVL应用1)对于视觉感知任务2)对于对比任务3)对于生成任务4)对于
- 论文阅读-秦汉时期北方边疆组织的空间互动模式与直道的定位(中国)
MilkLeong
论文阅读空间计算
论文英文题目:AspatialinteractionmodelofQin-HanDynastyorganisationonthenorthernfrontierandthelocationoftheZhidaohighway(China)发表于:journalofarchaeologicalscience,影响因子:3.030论文主要是使用空间互动模型来对秦汉时期的北方边疆直道进行定位和重建。分析
- 论文阅读笔记——Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware
寻丶幽风
论文阅读笔记论文阅读笔记人工智能深度学习机器人
ALOHA论文ALOHA解决了策略中的错误可能随时间累积,且人类演示可能是非平稳的,提出了ACT(ActionChunkingwithTransformers)方法。ActionChunking模仿学习中,compoundingerror是致使任务失败的主要原因。具体来说,当智能体(agent)在测试时遇到训练集中未见过的情况时,可能会产生预测误差。这些误差会逐步累积,导致智能体进入未知状态,最终
- 【论文阅读】LayoutPrompter: Awaken the Design Ability of Large Language Models
进击的乔洋
论文阅读语言模型人工智能
LayoutPrompter:AwakentheDesignAbilityofLargeLanguageModelsabstract条件图形布局生成是一种自动将用户约束映射为高质量布局的技术,目前受到了广泛关注。尽管最近的工作取得了很好的性能,但缺乏通用性和数据效率阻碍了它们的实际应用。本文提出Layout-Prompter,利用大型语言模型(llm)通过上下文学习来解决上述问题。LayoutPr
- 论文阅读方法
某风吾起
work哲学与人生论文阅读
文章目录步骤一:对论文进行自我判断阅读题目和关键词。阅读摘要阅读总结要点步骤二:阅读文章阅读图表和图表的注释阅读引言阅读实验部分阅读结果和作者对结果的讨论(创新点)要点步骤三:精度论文回答问题1回答问题2回答问题3要点步骤一:对论文进行自我判断阅读题目和关键词。观察这些关键词是否与你的研究的内容有关。如果不相干,可以随时停止,换篇文章看。阅读摘要摘要一般包含了整篇文章的主要内容,是非常非常重要的部
- 论文阅读:Recipe for a General, Powerful, Scalable Graph Transformer
不会&编程
图神经网络论文阅读论文阅读transformer深度学习图神经网络人工智能
RecipeforaGeneral,Powerful,ScalableGraphTransformer论文和代码地址1介绍与贡献2GPS模型2.1模型框架图2.2PE和SE2.3GPSlayer:一种MPNN+Transformer的混合模型GraphTransformer)论文和代码地址论文地址:https://arxiv.org/pdf/2205.12454v4代码地址:https://git
- Triplet Loss原理及 Python实现
AIGC_ZY
DiffusionModelspython深度学习机器学习
Tripletloss最初是谷歌在FaceNet:AUnifiedEmbeddingforFaceRecognitionandClustering论文中提出的,可以学到较好的人脸的embeddingTripletLoss是一种用于训练特征嵌入(featureembedding)的损失函数,广泛应用于人脸识别、图像检索等需要度量相似性的任务。其核心思想是通过学习将同类样本的嵌入距离拉近,不同类样本的
- 介绍常见的图片分类模型与算法
萧鼎
python基础到进阶教程算法分类数据挖掘
介绍常见的图片分类模型与算法在机器学习和深度学习的领域中,图片分类任务是一个广泛的应用场景。随着深度学习技术的飞速发展,很多强大的图像分类算法和模型已经被提出,广泛应用于从医疗影像到自动驾驶、从人脸识别到图像检索等多个领域。本文将重点介绍多种用于图像分类的经典算法与模型,帮助你了解在图像分类任务中常用的技术。1.传统机器学习模型在深度学习崭露头角之前,传统的机器学习模型是图像分类的主流方法。这些模
- Self-Attentive Sequential Recommendation论文阅读笔记
调包调参侠
推荐系统学习深度学习机器学习神经网络算法
SASRec论文阅读笔记论文标题:Self-AttentiveSequentialRecommendation发表于:2018ICDM作者:Wang-ChengKang,JulianMcAuley论文代码:https://github.com/pmixer/SASRec.pytorch论文地址:https://arxiv.org/pdf/1808.09781v1.pdf摘要顺序动态是许多现代推荐系
- Angular Superresolution of Real Aperture Radar for Target Scale Measurement 论文阅读
青铜锁00
论文阅读Radar论文阅读
AngularSuperresolutionofRealApertureRadarforTargetScaleMeasurement1.研究目标与实际意义1.1研究目标1.2实际意义2.创新方法与模型设计2.1广义混合正则化(GHR)框架核心公式与传统方法对比2.2自适应迭代重加权(AIR)求解器算法设计复杂度分析3.实验设计与结果验证3.1仿真实验实验设置关键结果3.2实际数据验证4.未来研究方
- Angular Superresolution of Real Aperture Radar Using Online Detect-Before-Reconstruct Framework 论文阅读
青铜锁00
论文阅读Radar论文阅读
AngularSuperresolutionofRealApertureRadarUsingOnlineDetect-Before-ReconstructFramework1.论文的研究目标与实际问题意义1.1研究目标1.2实际问题与产业意义2.论文的创新方法、模型与公式分析(重点)2.1核心创新点2.2关键公式与模型2.2.1信号模型2.2.2稀疏正则化优化问题2.2.3坐标循环最小化2.2.4
- 论文阅读笔记2
sixfrogs
论文阅读笔记论文阅读cnn
OptimizingMemoryEfficiencyforDeepConvolutionalNeuralNetworksonGPUs1论文简介作者研究了CNN各层的访存效率,并揭示了数据结构和访存模式对CNN的性能影响。并提出了优化方法。2方法介绍2.1Benchmarks数据集:MNIST,CIFAR,ImageNetCNN:AlexNet,ZFNet,VGG2.2实验设置CPU:IntelXe
- [论文阅读]DAMO-YOLO——实时目标检测设计报告
一朵小红花HH
知识蒸馏目标检测YOLO目标检测目标跟踪论文阅读人工智能
DAMO-YOLODAMO-YOLO:AReportonReal-TimeObjectDetectionDesign实时目标检测设计报告论文网址:DAMO-YOLO简读论文这篇论文介绍了一个名为DAMO-YOLO的新型目标检测方法,相比YOLO系列的其他方法有着更好的性能。该方法的优势来自于几项新技术:使用了MAE-NAS作为骨干网络,可以自动搜索出不同延迟预算下的优化网络结构。MAE-NAS被称
- 大模型隐空间推理论文阅读笔记
猴猴猪猪
AIGCpython实验记录人工智能深度学习
文章目录TrainingLargeLanguageModelstoReasoninaContinuousLatentSpace一.简介1.1摘要1.2引言TrainingLargeLanguageModelstoReasoninaContinuousLatentSpace一.简介机构:Meta代码:任务:特点:方法:1.1摘要现状:大语言模型往往局限在“languagespace"进行推理,在解决
- 【网安AIGC专题】46篇前沿代码大模型论文、24篇论文阅读笔记汇总_大模型在代码缺陷检测领域的应用实践(1)
2401_84972910
程序员AIGC论文阅读笔记
欢迎一起踏上探险之旅,挖掘无限可能,共同成长!写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。本系列文章不仅涵盖了46篇关于前沿代码大模型的论文,还包含了24篇深度论文阅读笔记,全面覆盖了代码生成、漏洞检测、程序修复、生成测试等多个应用方向,深刻展示了这些技术如何在网络安全领域中起到革命性作用。同时,本系列还细致地介绍了大模型技术的基础架构、增强策略、关键数据
- An Iterative Technique for the Rectification of Observed Distributions 论文阅读
青铜锁00
论文阅读论文阅读
AnIterativeTechniquefortheRectificationofObservedDistributions-L.B.Lucy1.研究目标与实际意义1.1研究目标1.2实际意义2.新方法与公式分析2.1核心思路:基于贝叶斯定理的迭代框架2.1.1贝叶斯逆概率公式2.1.2迭代更新规则2.1.3多维推广2.2方法优势2.3对比传统方法3.实验验证3.1数值实验设计3.2关键结果4.雷
- Azimuth Superresolution of Forward-Looking Radar Imaging Which Relies on Linearized Bregman论文阅读
青铜锁00
论文阅读Radar论文阅读
AzimuthSuperresolutionofForward-LookingRadarImagingWhichReliesonLinearizedBregman1.论文的研究目标与意义1.1研究目标1.2实际应用意义2.论文提出的新方法、公式与优势(重点)2.1方法框架2.1.1贝叶斯建模2.1.2线性化Bregman算法2.2与传统方法的对比2.3公式总结3.实验设计与结果3.1点目标仿真3.
- A Bayesian Angular Superresolution Method With Lognormal Constraint for Sea-Surface Target 论文阅读
青铜锁00
论文阅读Radar论文阅读
目录1.研究背景与问题2.方法创新3.关键优势4.实验验证5.与传统方法对比6.结论与意义1.研究背景与问题核心挑战:实孔径雷达受限于天线孔径尺寸,导致角分辨率不足,影响海面目标(如船舶)的精细化探测。传统方法局限性:谱估计方法(如MUSIC、IAA):依赖多快拍数据,机械扫描雷达难以满足。正则化方法(如TSVD、l1/l2约束):假设噪声服从高斯分布,未考虑海杂波的非高斯特性(如Rayleigh
- 论文阅读笔记——Prediction with Action: Visual Policy Learning via Joint Denoising Process
寻丶幽风
论文阅读笔记论文阅读笔记人工智能
以前的method是输入视频输出视频或者输入视频和action学习action,该方法认为action,video和othercondition具有一定联系,所以一次性对所有的进行jointdenoise。网络结构采用MaskedMulti-headAttention关联不同模态,使用DiT的backbone。
- 深度学习重要论文阅读笔记 ResNet (2025.2.26)
北岛寒沫
逐界星辰2025计算机科研深度学习论文阅读笔记
文章目录问题背景数据预处理神经网络模型模型性能知识点积累英语单词积累问题背景随着神经网络变得更深(层数变多),模型的训练过程也会变得更加困难。当神经网络的深度增加,就会出现梯度消失和梯度下降现象,妨碍模型的收敛。不过,这种情况可以通过归一化的模型初始化和中间的归一化层基本解决。但是,尽管在增加了归一化技术的情况下很深的神经网络可以收敛,又出现了另外一个问题,即随着模型深度的增加,模型的准确率反而下
- 9、论文阅读:无监督的感知驱动深水下图像增强
Maker~
图像增强论文阅读深度学习计算机视觉
Perception-DrivenDeepUnderwaterImageEnhancementWithoutPairedSupervision前言引言相关工作UIE模型基于非物理模型基于物理模型基于深度学习质量度量在图像增强中的应用方法论问题表述PQR模型PDD网络生成器损失函数实验A.数据集B.训练细节C.实验结果**PQR模型结果****定量UIE结果****定量UIE结果****可视化增强结
- 论文阅读笔记1——DARTS:Differentiable Architecture Search可微分架构搜索(一)(论文翻译学习)
fuhao7i
论文阅读笔记深度学习人工智能机器学习算法计算机视觉
DARTS:DifferentiableArchitectureSearch可微分架构搜索(一)DARTS:DifferentiableArchitectureSearch(一)ABSTRACT摘要1.INTRODUCTION介绍2.可微的结构搜索加油加油!如果你感觉你现在很累,那么恭喜你,你现在正在走上坡路!让我们一起加油!欢迎关注我的讲解视频,让我们一起学习:Bilibili主页:https:
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb