tensorflow中一维卷积conv1d处理语言序列举例

tf.nn.conv1d:

函数形式: tf.nn.conv1d(value, filters, stride, padding, use_cudnn_on_gpu=None, data_format=None, name=None):

程序举例:

import tensorflow as tf
import numpy as np
sess = tf.InteractiveSession()

# --------------- tf.nn.conv1d  -------------------
inputs=tf.ones((64,10,3))  # [batch, n_sqs, embedsize]
w=tf.constant(1,tf.float32,(5,3,32))  # [w_high, embedsize, n_filers]
conv1 = tf.nn.conv1d(inputs,w,stride=2 ,padding='SAME')  # conv1=[batch, round(n_sqs/stride), n_filers],stride是步长。

tf.global_variables_initializer().run()
out = sess.run(conv1)
print(out)

注:一维卷积中padding='SAME'只在输入的末尾填充0

tf.layters.conv1d:

函数形式:tf.layters.conv1d(inputs, filters, kernel_size, strides=1, padding='valid', data_format='channels_last', dilation_rate=1, activation=None, use_bias=True,...)

程序举例:

import tensorflow as tf
import numpy as np
sess = tf.InteractiveSession()

# --------------- tf.layters.conv1d -------------------
inputs=tf.ones((64,10,3))  # [batch, n_sqs, embedsize]
num_filters=32
kernel_size =5
conv2 = tf.layers.conv1d(inputs, num_filters, kernel_size,strides=2, padding='valid',name='conv2')  # shape = (batchsize, round(n_sqs/strides),num_filters)
tf.global_variables_initializer().run()
out = sess.run(conv2)
print(out)

二维卷积实现一维卷积:

import tensorflow as tf

sess = tf.InteractiveSession()

def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')

def max_pool_1x2(x):
    return tf.nn.avg_pool(x, ksize=[1,1,2,1], strides=[1,1,2,1], padding='SAME')
'''
ksize = [x, pool_height, pool_width, x]
strides = [x, pool_height, pool_width, x]
'''

x = tf.Variable([[1,2,3,4]], dtype=tf.float32)
x = tf.reshape(x, [1,1,4,1])  #这一步必不可少,否则会报错说维度不一致;
'''
[batch, in_height, in_width, in_channels] = [1,1,4,1]
'''

W_conv1 = tf.Variable([1,1,1],dtype=tf.float32)  # 权重值
W_conv1 = tf.reshape(W_conv1, [1,3,1,1])  # 这一步同样必不可少
'''
[filter_height, filter_width, in_channels, out_channels]
'''

h_conv1 = conv2d(x, W_conv1)   # 结果:[4,8,12,11]

h_pool1 = max_pool_1x2(h_conv1)

tf.global_variables_initializer().run()

print(sess.run(h_conv1))  # 结果array([6,11.5])x

两种池化操作:

# 1:stride max pooling
convs = tf.expand_dims(conv, axis=-1)  # shape=[?,596,256,1]
smp = tf.nn.max_pool(value=convs, ksize=[1, 3, self.config.num_filters, 1], strides=[1, 3, 1, 1],
                 padding='SAME')  # shape=[?,299,256,1]
smp = tf.squeeze(smp, -1)  # shape=[?,299,256]
smp = tf.reshape(smp, shape=(-1, 199 * self.config.num_filters))

# 2: global max pooling layer
gmp = tf.reduce_max(conv, reduction_indices=[1], name='gmp')

不同核尺寸卷积操作:

kernel_sizes = [3,4,5]  # 分别用窗口大小为3/4/5的卷积核
with tf.name_scope("mul_cnn"):
    pooled_outputs = []
    for kernel_size in kernel_sizes:
        # CNN layer
        conv = tf.layers.conv1d(embedding_inputs, self.config.num_filters, kernel_size, name='conv-%s' % kernel_size)
        # global max pooling layer
        gmp = tf.reduce_max(conv, reduction_indices=[1], name='gmp')
        pooled_outputs.append(gmp)
    self.h_pool = tf.concat(pooled_outputs, 1)  #池化后进行拼接

你可能感兴趣的:(深度学习)