adam 策略参数设置 torch tensorflow keras

  • TensorFlow: learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08.
    Keras: lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0.
  • Blocks: learning_rate=0.002, beta1=0.9, beta2=0.999, epsilon=1e-08, decay_factor=1.
  • Lasagne: learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08
  • Caffe: learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08
  • MxNet: learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8
  • Torch: learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8can

参考链接:https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

adam表现是最好的策略,但是上面的learning rate,如果用了normalization,设置大一些会比较好0.005,0.01什么的。如果没有预训练应该再大一些,如果预训练那就小一些。

你可能感兴趣的:(adam 策略参数设置 torch tensorflow keras)