unpersist
http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html#unpersist
Dematerializes the RDD (i.e. Erases all data items from hard-disk and memory). However, the RDD object remains. If it is referenced in a computation, Spark will regenerate it automatically using the stored dependency graph.
取消实现RDD(即从硬盘和内存中擦除所有数据项)。 但是,RDD对象仍然保留。 如果在计算中引用它,Spark将使用存储的依赖图自动重新生成它。
Listing Variants
def unpersist(blocking: Boolean = true): RDD[T]
Example
val y = sc.parallelize(1 to 10, 10)
val z = (y++y)
z.collect
z.unpersist(true)
14/04/19 03:04:57信息UnionRDD:从列表删除抽样22持久性
14/04/19 03:04:57 INFO BlockManager: Removing RDD 22
Spark缓存清理机制:
MetadataCleaner对象中有一个定时器,用于清理下列的元数据信息:
MAP_OUTPUT_TRACKER:Maptask的输出元信息
SPARK_CONTEXT:persistentRdds中的rdd
HTTP_BROADCAST, http广播的元数据
BLOCK_MANAGER:blockmanager中存储的数据
SHUFFLE_BLOCK_MANAGER:shuffle的输出数据
BROADCAST_VARS:Torrent方式广播broadcast的元数据
contextcleaner清理真实数据:
ContextCleaner为RDD、shuffle、broadcast、accumulator、Checkpoint维持了一个弱引用,当相关对象不可达时,就会将对象插入referenceQueue中。有一个单独的线程来处理这个队列中的对象。
RDD:最终从各节点的blockmanager的memoryStore、diskStore中删除RDD数据
shuffle:删除driver中的mapstatuses关于该shuffleId的信息;删除所有节点中关于该shuffleId的所有分区的数据文件和索引文件
broadcast:最终从各节点的blockmanager的memoryStore、diskStore中删除broadcast数据
Checkpoint:清理checkpointDir目录下关于该rddId的文件
举个RDD的例子,说明一下这样做有什么好处?
默认情况下,RDD是不缓存的,即计算完之后,下一次用需要重新计算。如果要避免重新计算的开销,就要将RDD缓存起来,这个道理谁都明白。但是,缓存的RDD什么时候去释放呢?这就用到了上面提到的弱引用。当我们调用persist缓存一个RDD时,会调用registerRDDForCleanup(this),这就是将本身的RDD注册到一个弱引用中。当这个RDD变为不可达时,会自动将该RDD对象插入到referenceQueue中,等到下次GC时就会走doCleanupRDD分支。RDD可能保存在内存或者磁盘中,这样就能保证,不可达的RDD在GC到来时可以释放blockmanager中的RDD真实数据。
再考虑一下,什么时候RDD不可达了呢?为了让出内存供其他地方使用,除了手动unpersist之外,需要有机制定时清理缓存的RDD数据,这就是MetadataCleaner的SPARK_CONTEXT干的事情。它就是定期的清理persistentRdds中过期的数据,其实与unpersist产生的作用是一样的。一旦清理了,那这个缓存的RDD就没有强引用了。
spark core 2.0 ContextCleaner
http://blog.csdn.net/yueqian_zhu/article/details/48177353
CleanupTaskWeakReference是整个cleanup的核心,这是一个普通类,有三个成员,并且继承WeakReference。referent是一个weak reference,当指向的对象被gc时,把CleanupTaskWeakReference放到队列里,详情见:java WeekReference ReferenceQueue测试
[html] view plain copy
/**
* A WeakReference associated with a CleanupTask.
*
* When the referent object becomes only weakly reachable, the corresponding
* CleanupTaskWeakReference is automatically added to the given reference queue.
*/
private class CleanupTaskWeakReference(
val task: CleanupTask,
referent: AnyRef,
referenceQueue: ReferenceQueue[AnyRef])
extends WeakReference(referent, referenceQueue)
以RDD为例,当注册一个RDD的cleanup的操作时,初始化一个对象CleanRDD(rdd.id),这样就记住了哪个rdd被回收。
[html] view plain copy
/* Register a RDD for cleanup when it is garbage collected. /
def registerRDDForCleanup(rdd: RDD[_]): Unit = {
registerForCleanup(rdd, CleanRDD(rdd.id))
}
在regitsterForCleanup里,把CleanupTaskWeakReference放到referenceBuffer里,防止被回收。
[html] view plain copy
/* Register an object for cleanup. /
private def registerForCleanup(objectForCleanup: AnyRef, task: CleanupTask): Unit = {
referenceBuffer.add(new CleanupTaskWeakReference(task, objectForCleanup, referenceQueue))
}
keepClean不断从referenceQueue里取回收的对象,调用相应的方法处理。reference.get返回CleanupTaskWeakReference。
[html] view plain copy
private def keepCleaning(): Unit = Utils.tryOrStopSparkContext(sc) {
while (!stopped) {
try {
val reference = Option(referenceQueue.remove(ContextCleaner.REF_QUEUE_POLL_TIMEOUT))
.map(_.asInstanceOf[CleanupTaskWeakReference])
// Synchronize here to avoid being interrupted on stop()
synchronized {
reference.map(_.task).foreach { task =>
logDebug(“Got cleaning task ” + task)
referenceBuffer.remove(reference.get)
task match {
case CleanRDD(rddId) =>
doCleanupRDD(rddId, blocking = blockOnCleanupTasks)
case CleanShuffle(shuffleId) =>
doCleanupShuffle(shuffleId, blocking = blockOnShuffleCleanupTasks)
case CleanBroadcast(broadcastId) =>
doCleanupBroadcast(broadcastId, blocking = blockOnCleanupTasks)
case CleanAccum(accId) =>
doCleanupAccum(accId, blocking = blockOnCleanupTasks)
case CleanCheckpoint(rddId) =>
doCleanCheckpoint(rddId)
}
}
}
} catch {
case ie: InterruptedException if stopped => // ignore
case e: Exception => logError(“Error in cleaning thread”, e)
}
}
}
doCleaRDD方法里,负责具体的清理。
[html] view plain copy
/* Perform RDD cleanup. /
def doCleanupRDD(rddId: Int, blocking: Boolean): Unit = {
try {
logDebug(“Cleaning RDD ” + rddId)
sc.unpersistRDD(rddId, blocking)
listeners.asScala.foreach(_.rddCleaned(rddId))
logInfo(“Cleaned RDD ” + rddId)
} catch {
case e: Exception => logError(“Error cleaning RDD ” + rddId, e)
}
}