这一小节并不会向你展示非常先进非常酷的新特性,也不会对场景的视觉质量有显著的提高。但是,这一节会或多或少涉及GLSL的一些有趣的地方以及一些很棒的技巧,它们可能在今后会帮助到你。简单来说,它们就是在组合使用OpenGL和GLSL创建程序时的一些最好要知道的东西,和一些会让你生活更加轻松的特性。
我们将会讨论一些有趣的内建变量(Built-in Variable),这些内建变量管理着色器输入和输出,以及一个叫做Uniform缓冲对象(Uniform Buffer Object) 的有用工具。
着色器都是最简化的,如果需要当前着色器以外地方的数据的话,我们必须要将数据传进来。我们已经学会使用顶点属性、uniform和采样器来完成这一任务了。然而,除此之外,GLSL还定义了另外几个以gl_
为前缀的变量,它们能提供给我们更多的方式来读取/写入数据。我们已经在前面教程中接触过其中的两个了:顶点着色器的输出向量gl_Position
,和片段着色器的gl_FragCoord
。
我们将会讨论几个有趣的GLSL内建输入和输出变量,并会解释它们能够怎样帮助你。注意,我们将不会讨论GLSL中存在的所有内建变量,如果你想知道所有的内建变量的话,请查看OpenGL的wiki。
我们已经见过gl_Position
了,它是顶点着色器的裁剪空间输出位置向量。如果你想在屏幕上显示任何东西,在顶点着色器中设置gl_Position
是必须的步骤。这已经是它的全部功能了。
我们能够选用的其中一个图元是GL_POINTS
,如果使用它的话,每一个顶点都是一个图元,都会被渲染为一个点。我们可以通过OpenGL的glPointSize
函数来设置渲染出来的点的大小,但我们也可以在顶点着色器中修改这个值。
GLSL定义了一个叫做gl_PointSize
输出变量,它是一个float变量,你可以使用它来设置点的宽高(像素)。在顶点着色器中修改点的大小的话,你就能对每个顶点设置不同的值了。
在顶点着色器中修改点大小的功能默认是禁用的,如果你需要启用它的话,你需要启用OpenGL的GL_PROGRAM_POINT_SIZE
:
glEnable(GL_PROGRAM_POINT_SIZE);
一个简单的例子就是将点的大小设置为裁剪空间位置的z值,也就是顶点距观察者的距离。点的大小会随着观察者距顶点距离变远而增大。
void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
gl_PointSize = gl_Position.z;
}
结果就是,当我们远离这些点的时候,它们会变得更大:
可以想到,对每个顶点使用不同的点大小,会在粒子生成之类的技术中很有意思。
gl_Position
和gl_PointSize
都是输出变量,因为它们的值是作为顶点着色器的输出被读取的。我们可以对它们进行写入,来改变结果。顶点着色器还为我们提供了一个有趣的输入变量,我们只能对它进行读取,它叫做gl_VertexID。
gl_Position
和gl_PointSize
是输出变量,我们一般在顶点着色器中计算后的结果存进这些输出变量,以便OpenGL管线读取这些输出变量,gl_VertexID
是输入变量,即能够在顶点着色器中访问该输入变量,但是不能修改该输入变量的内容。
整型变量gl_VertexID储存了正在绘制顶点的当前ID。当(使用glDrawElements)进行索引渲染的时候,这个变量会存储正在绘制顶点的当前索引。当(使用glDrawArrays)不使用索引进行绘制的时候,这个变量会储存从渲染调用开始的已处理顶点数量。
虽然现在它没有什么具体的用途,但知道我们能够访问这个信息总是好的。
在片段着色器中,我们也能访问到一些有趣的变量。GLSL提供给我们两个有趣的输入变量:gl_FragCoord
和gl_FrontFacing
。
在讨论深度测试的时候,我们已经见过gl_FragCoord
很多次了,因为gl_FragCoord
的z分量等于对应片段的深度值。然而,我们也能使用它的x和y分量来实现一些有趣的效果。
gl_FragCoord
的x和y分量记录的是当前片段在屏幕空间坐标系下的x、y坐标。
gl_FragCoord
的x和y分量是片段的窗口空间(Window-space)坐标,其原点为窗口的左下角。我们已经使用glViewport
设定了一个800x600的窗口了,所以片段窗口空间坐标的x分量将在0到800之间,y分量在0到600之间。
通过利用片段着色器,我们可以根据片段的窗口坐标,计算出不同的颜色。gl_FragCoord的一个常见用处是用于对比不同片段计算的视觉输出效果,这在技术演示中可以经常看到。比如说,我们能够将屏幕分成两部分,在窗口的左侧渲染一种输出,在窗口的右侧渲染另一种输出。下面这个例子片段着色器会根据窗口坐标输出不同的颜色:
通过使用输入变量gl_FragCoord
可以将屏幕划分为多个区域。
void main()
{
if(gl_FragCoord.x < 400)
FragColor = vec4(1.0, 0.0, 0.0, 1.0);
else
FragColor = vec4(0.0, 1.0, 0.0, 1.0);
}
因为窗口的宽度是800。当一个像素的x坐标小于400时,它一定在窗口的左侧,所以我们给它一个不同的颜色。
我们现在会计算出两个完全不同的片段着色器结果,并将它们显示在窗口的两侧。举例来说,你可以将它用于测试不同的光照技巧。
片段着色器另外一个很有意思的输入变量是gl_FrontFacing
。在面剔除教程中,我们提到OpenGL能够根据顶点的环绕顺序来决定一个面是正向还是背向面。如果我们不(启用GL_FACE_CULL来)使用面剔除,那么gl_FrontFacing
将会告诉我们当前片段是属于正向面的一部分还是背向面的一部分。举例来说,我们能够对正向面计算出不同的颜色。
gl_FrontFacing
变量是一个bool,如果当前片段是正向面的一部分那么就是true
,否则就是false
。比如说,我们可以这样子创建一个立方体,在内部和外部使用不同的纹理:
#version 330 core
out vec4 FragColor;
in vec2 TexCoords;
uniform sampler2D frontTexture;
uniform sampler2D backTexture;
void main()
{
if(gl_FrontFacing)
FragColor = texture(frontTexture, TexCoords);
else
FragColor = texture(backTexture, TexCoords);
}
如果我们往箱子里面看,就能看到使用的是不同的纹理。
注意,如果你开启了面剔除,你就看不到箱子内部的面了,所以现在再使用gl_FrontFacing就没有意义了。
输入变量gl_FragCoord
能让我们读取当前片段的窗口空间坐标,并获取它的深度值,但是它是一个只读(Read-only)变量。我们不能修改片段的窗口空间坐标,但实际上修改片段的深度值还是可能的。GLSL提供给我们一个叫做gl_FragDepth的输出变量,我们可以使用它来在着色器内设置片段的深度值。
注意:gl_FragDepth是输出变量。
要想设置深度值,我们直接写入一个0.0到1.0之间的float值到输出变量gl_FragDepth
就可以了:
gl_FragDepth = 0.0; // 这个片段现在的深度值为 0.0
如果着色器没有写入值到gl_FragDepth,它会自动取用gl_FragCoord.z的值。
然而,由我们自己设置深度值有一个很大的缺点,只要我们在片段着色器中对gl_FragDepth进行写入,OpenGL就会禁用所有的提前深度测试(Early Depth Testing)。它被禁用的原因是,OpenGL无法在片段着色器运行之前得知片段将拥有的深度值,因为片段着色器可能会完全修改这个深度值。
在写入gl_FragDepth时,你就需要考虑到它所带来的性能影响。然而,从OpenGL 4.2起,我们仍可以对两者进行一定的调和,在片段着色器的顶部使用深度条件(Depth Condition) 重新声明gl_FragDepth变量:
layout (depth_) out float gl_FragDepth;
condition
可以为下面的值:
通过将深度条件设置为greater
或者less
,OpenGL就能假设你只会写入比当前片段深度值更大或者更小的值了。这样子的话,当深度值比片段的深度值要小的时候,OpenGL仍是能够进行提前深度测试的。
下面这个例子中,我们对片段的深度值进行了递增,但仍然也保留了一些提前深度测试:
#version 420 core // 注意GLSL的版本!
out vec4 FragColor;
layout (depth_greater) out float gl_FragDepth;
void main()1`
{
FragColor = vec4(1.0);
gl_FragDepth = gl_FragCoord.z + 0.1;
}
注意这个特性只在OpenGL 4.2版本或以上才提供。
提前深度测试:在片元还没进行片元着色器代码计算的时候,已经知道该片元的深度值,而提前深度测试就是在这个时候去和深度缓冲相应的深度值做比较,不通过的片元不需要执行片元着色器的代码,直接抛弃,通过的片元才需要执行片元着色器的代码,这能够对性能有很大的优化。
但是因为片元着色器中有可能改变片元的深度值,就出现了深度条件,greater表示我们要保证该片元改变后的深度值a要比原来的深度值b要大,而less表示我们要保证该片元改变后的深度值c要比原来的深度值b要小,提前深度测试还是使用原来的深度值b去做深度比较,但是稍微复杂。这一部分我的理解是:前提是greater的话,深度值b比深度缓冲的深度值d要小,此时我们无法保证c和d的大小关系,不能提前深度测试,乖乖进行片元着色器代码的计算;如果深度值b比深度缓冲的深度值d要大,此时c和d的大小关系就确定了,可以进行提前深度测试;同理,前提是less的话,深度值b比d要小,此时c和d的大小关系确定了,可以进行提前深度测试;如果深度值b比d要大,此时c和d的大小关系不确定,不能提前深度测试。
到目前为止,每当我们希望从顶点着色器向片段着色器发送数据时,我们都声明了几个对应的输入/输出变量。将它们一个一个声明是着色器间发送数据最简单的方式了,但当程序变得更大时,你希望发送的可能就不只是几个变量了,它还可能包括数组和结构体。
为了帮助我们管理这些变量,GLSL为我们提供了一个叫做接口块(Interface Block) 的东西,来方便我们组合这些变量。接口块的声明和struct的声明有点相像,不同的是,现在根据使用in或out关键字来定义它是一个输入块还是输出块(Block)。
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCoords;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
out VS_OUT
{
vec2 TexCoords;
} vs_out;
void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
vs_out.TexCoords = aTexCoords;
}
这次我们声明了一个叫做vs_out的接口块,它打包了我们希望发送到下一个着色器中的所有输出变量。这只是一个很简单的例子,但你可以想象一下,它能够帮助你管理着色器的输入和输出。当我们希望将着色器的输入或输出打包为数组时,它也会非常有用。
之后,我们还需要在下一个着色器,即片段着色器,中定义一个输入接口块。块名(Block Name) 应该是和着色器中一样的(VS_OUT),但实例名(Instance Name) (顶点着色器中用的是vs_out)可以是随意的,但要避免使用误导性的名称,比如对实际上包含输入变量的接口块命名为vs_out
。==块名要一致,实例名可以不一样。==
#version 330 core
out vec4 FragColor;
in VS_OUT
{
vec2 TexCoords;
} fs_in;
uniform sampler2D texture;
void main()
{
FragColor = texture(texture, fs_in.TexCoords);
}
只要两个接口块的名字一样,它们对应的输入和输出将会匹配起来。这是帮助你管理代码的又一个有用特性,它在几何着色器这样穿插特定着色器阶段的场景下会很有用。
我们已经使用OpenGL很长时间了,学会了一些很酷的技巧,但也遇到了一些很麻烦的地方。比如说,当使用多于一个的着色器时,尽管大部分的uniform变量都是相同的,我们还是需要不断地设置它们,所以为什么要这么麻烦地重复设置它们呢?
当我们使用两个着色器对象时,需要重复设置着色器对象中的uniform变量, 如下代码所示:
normalShader.Use();
normalShader.setMat4("cameraSpaceMatrix", cameraSpaceMatrix);
normalShader.setMat4("lightBiasSpaceMatrix", lightBiasSpaceMatrix);
normalShader.setMat4("model", Transmodel);
normalShader.setVec3("viewPos", camera.getPosition());
normalShader.setVec3("lightPos", lightPos);
occlusionShader.Use();
occlusionShader.setMat4("cameraSpaceMatrix", cameraSpaceMatrix);
occlusionShader.setMat4("model", Transmodel);
occlusionShader.setVec3("lightPos", lightPos);
occlusionShader.setVec3("viewPos", camera.getPosition());
occlusionShader.setFloat("height_scale", height_scale);
为了避免上述代码的情况,提供了Uniform缓冲对象。
OpenGL为我们提供了一个叫做Uniform缓冲对象(Uniform Buffer Object) 的工具,它允许我们定义一系列在多个着色器中相同的全局Uniform变量。当使用Uniform缓冲对象的时候,我们只需要设置相关的uniform一次。当然,我们仍需要手动设置每个着色器中不同的uniform。并且创建和配置Uniform缓冲对象会有一点繁琐。
因为Uniform缓冲对象仍是一个缓冲,我们可以使用glGenBuffers来创建它,将它绑定到GL_UNIFORM_BUFFER缓冲目标,并将所有相关的uniform数据存入缓冲。在Uniform缓冲对象中储存数据是有一些规则的,我们将会在之后讨论它。首先,我们将使用一个简单的顶点着色器,将projection和view矩阵存储到所谓的Uniform块(Uniform Block)中:
#version 330 core
layout (location = 0) in vec3 aPos;
layout (std140) uniform Matrices
{
mat4 projection;
mat4 view;
};
uniform mat4 model;
void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
}
在我们大多数的例子中,我们都会在每个渲染迭代中,对每个着色器设置projection和view Uniform矩阵。这是利用Uniform缓冲对象的一个非常完美的例子,因为现在我们只需要存储这些矩阵一次就可以了。
这里,我们声明了一个叫做Matrices的Uniform块,它储存了两个4x4矩阵。Uniform块中的变量可以直接访问,不需要加块名作为前缀。接下来,我们在OpenGL代码中将这些矩阵值存入缓冲中,每个声明了这个Uniform块的着色器都能够访问这些矩阵。
你现在可能会在想layout (std140)
这个语句是什么意思。它的意思是说,当前定义的Uniform块对它的内容使用一个特定的内存布局。这个语句设置了Uniform块布局(Uniform Block Layout)。
Uniform块的内容是储存在一个缓冲对象中的,它实际上只是一块预留内存。因为这块内存并不会保存它具体保存的是什么类型的数据,我们还需要告诉OpenGL内存的哪一部分对应着着色器中的哪一个uniform变量。
假设着色器中有以下的这个Uniform块:
layout (std140) uniform ExampleBlock
{
float value;
vec3 vector;
mat4 matrix;
float values[3];
bool boolean;
int integer;
};
我们需要知道的是每个变量的大小(字节)和(从块起始位置的)偏移量,来让我们能够按顺序将它们放进缓冲中。每个元素的大小都是在OpenGL中有清楚地声明的,而且直接对应C++数据类型,其中向量和矩阵都是float数组。OpenGL没有声明的是这些变量间的间距(Spacing)。这允许硬件能够在它认为合适的位置放置变量。比如说,一些硬件可能会将一个vec3放置在float边上。不是所有的硬件都能这样处理,可能会在附加这个float之前,先将vec3填充为一个4个float的数组。这个特性本身很棒,但是会对我们造成麻烦。
默认情况下,GLSL会使用一个叫做共享(Shared) 布局的Uniform内存布局,因为一旦硬件定义了偏移量,它们在多个程序中是共享并一致的。使用共享布局时,GLSL是可以为了优化而对uniform变量的位置进行变动的,只要变量的顺序保持不变。因为我们无法知道每个uniform变量的偏移量,我们也就不知道如何准确地填充我们的Uniform缓冲了。我们能够使用像是glGetUniformIndices这样的函数来查询这个信息,但这超出本节的范围了。
共享Uniform块内存布局:有很多着色器程序,其中也有很多的uniform变量,而在共享shared
块内存布局下,OpenGL出于优化的目的,会移动uniform的变量,但是同一个程序下的uniform变量之间的顺序是保持不变的,就有可能出现在内存中不同程序的uniform变量交叉存放,无法通过计算来确认偏移量,但是能够通过函数glGetUniformIndices
来获取,但会导致工作量增加。
虽然共享布局给了我们很多节省空间的优化,但是我们需要查询每个uniform变量的偏移量,这会产生非常多的工作量。通常的做法是,不使用共享布局,而是使用std140布局。std140布局声明了每个变量的偏移量都是由一系列规则所决定的,这显式地声明了每个变量类型的内存布局。由于这是显式提及的,我们可以手动计算出每个变量的偏移量。
注意 共享布局和std140布局之间的区别,使用std140布局的话,同一个程序下的uniform变量存放在同一个内存空间下,可以通过计算来获取各变量间的偏移量,相对的缺点是有点浪费内存空间
每个变量都有一个++基准对齐量(Base Alignment),它等于一个变量在Uniform块中所占据的空间(包括填充量(Padding))++,这个基准对齐量是使用std140布局的规则计算出来的。接下来,对每个变量,我们再计算它的++对齐偏移量(Aligned Offset),它是一个变量从块起始位置的字节偏移量。一个变量的对齐字节偏移量必须等于基准对齐量的倍数++。
布局规则的原文可以在OpenGL的Uniform缓冲规范这里找到,但我们将会在下面列出最常见的规则。GLSL中的每个变量,比如说int、float和bool,都被定义为4字节量。每4个字节将会用一个N
来表示。
和OpenGL大多数的规范一样,使用例子就能更容易地理解。我们会使用之前引入的那个叫做ExampleBlock的Uniform块,并使用std140布局计算出每个成员的对齐偏移量:
layout (std140) uniform ExampleBlock
{
// 基准对齐量 // 对齐偏移量
float value; // 4 // 0
vec3 vector; // 16 // 16 (必须是16的倍数,所以 4->16)
mat4 matrix; // 16 // 32 (列 0)
// 16 // 48 (列 1)
// 16 // 64 (列 2)
// 16 // 80 (列 3)
float values[3]; // 16 // 96 (values[0])
// 16 // 112 (values[1])
// 16 // 128 (values[2])
bool boolean; // 4 // 144
int integer; // 4 // 148
};
作为练习,尝试去自己计算一下偏移量,并和表格进行对比。使用计算后的偏移量值,根据std140布局的规则,我们就能使用像是glBufferSubData的函数将变量数据按照偏移量填充进缓冲中了。虽然std140布局不是最高效的布局,但它保证了内存布局在每个声明了这个Uniform块的程序中是一致的。==不是最高效,但能保证布局一致性。==
通过在Uniform块定义之前添加layout (std140)语句,我们告诉OpenGL这个Uniform块使用的是std140布局。除此之外还可以选择两个布局,但它们都需要我们在填充缓冲之前先查询每个偏移量。我们已经见过shared
布局了,剩下的一个布局是packed
。当使用紧凑(Packed)布局时,是不能保证这个布局在每个程序中保持不变的(即非共享),因为它允许编译器去将uniform变量从Uniform块中优化掉,这在每个着色器中都可能是不同的。
我们已经讨论了如何在着色器中定义Uniform块,并设定它们的内存布局了,但我们还没有讨论该如何使用它们。
首先,我们需要调用glGenBuffers
,创建一个Uniform缓冲对象(Uniform buffer object)。一旦我们有了一个缓冲对象,我们需要将它绑定到GL_UNIFORM_BUFFER
目标,并调用glBufferData,分配足够的内存。
unsigned int uboExampleBlock;
glGenBuffers(1, &uboExampleBlock);
glBindBuffer(GL_UNIFORM_BUFFER, uboExampleBlock);
glBufferData(GL_UNIFORM_BUFFER, 152, NULL, GL_STATIC_DRAW); // 分配152字节的内存
glBindBuffer(GL_UNIFORM_BUFFER, 0);
现在,每当我们需要对缓冲更新或者插入数据,我们都会绑定到uboExampleBlock,并使用glBufferSubData
来更新它的内存。我们只需要更新这个Uniform缓冲一次,所有使用这个缓冲的着色器就都使用的是更新后的数据了。但是,如何才能让OpenGL知道哪个Uniform缓冲对应的是哪个Uniform块呢?
注意是:哪个uniform缓冲对象(uniform buffer object)对应哪个uniform块(uniform block)。
在OpenGL上下文中,定义了一些绑定点(Binding Point),我们可以将一个Uniform缓冲对象链接至它。在创建Uniform缓冲对象之后,我们将它绑定到其中一个绑定点上,并将着色器中的Uniform块绑定到相同的绑定点,把它们连接到一起。下面的这个图示展示了这个:(与纹理对象绑定到纹理单元的道理相似)
你可以看到,我们可以将多个Uniform缓冲对象绑定到不同的绑定点上。因为着色器A和着色器B都有一个链接到绑定点0的Uniform块,它们的Uniform块将会共享相同的uniform数据,uboMatrices,前提条件是两个着色器都定义了相同的Matrices Uniform块。
为了将Uniform块绑定到一个特定的绑定点中,我们需要调用glUniformBlockBinding
函数,它的第一个参数是一个程序对象,之后是一个Uniform块索引和链接到的绑定点。Uniform块索引(Uniform Block Index)是着色器中已定义Uniform块的位置值索引。这可以通过调用glGetUniformBlockIndex来获取,它接受一个程序对象和Uniform块的名称。我们可以用以下方式将图示中的Lights Uniform块链接到绑定点2:
unsigned int lights_index = glGetUniformBlockIndex(shaderA.ID, "Lights");
glUniformBlockBinding(shaderA.ID, lights_index, 2);
注意我们需要对每个着色器重复这一步骤。
从OpenGL 4.2版本起,你也可以添加一个布局标识符,显式地将Uniform块的绑定点储存在着色器中,这样就不用再调用glGetUniformBlockIndex和glUniformBlockBinding了。下面的代码显式地设置了Lights Uniform块的绑定点。
layout(std140, binding = 2) uniform Lights { ... };
接下来,我们还需要绑定Uniform缓冲对象到相同的绑定点上,这可以使用glBindBufferBase
或glBindBufferRange
来完成。
glBindBufferBase(GL_UNIFORM_BUFFER, 2, uboExampleBlock);
// 或
glBindBufferRange(GL_UNIFORM_BUFFER, 2, uboExampleBlock, 0, 152);
glBindbufferBase需要一个目标,一个绑定点索引和一个Uniform缓冲对象作为它的参数。这个函数将uboExampleBlock链接到绑定点2上,自此,绑定点的两端都链接上了。你也可以使用glBindBufferRange函数,它需要一个附加的偏移量和大小参数,这样可以绑定Uniform缓冲特定的一部分到绑定点中。通过使用glBindBufferRange函数,你可以让多个不同的Uniform块绑定到同一个Uniform缓冲对象上。
使用glBindBufferRange函数,知道Uniform缓冲对象存储着各uniform变量的数据值,可以将所有的uniform块的数据都放在同一个uniform缓冲对象中,只需计算出每个uniform块相应的偏移值和起始值,然后调用glBindBufferRange函数将相应范围的数据绑定到对应uniform块的绑定点上。
现在,所有的东西都配置完毕了,我们可以开始向Uniform缓冲对象中添加数据了。可以使用glBufferSubData函数,将所有数据存储为一个数组,或者更新缓冲中的数据的一部分。要想更新uniform变量boolean,我们可以用以下方式更新Uniform缓冲对象:
这里应用情景是:假设我们的model矩阵在某次事件触发后发生了变化,并希望在下一帧或当前帧能够看到模型的实际变换,此时如果model矩阵在着色器代码其中一个uniform块的话,就需要去更新uniform缓冲对象中相应的数据。
glBindBuffer(GL_UNIFORM_BUFFER, uboExampleBlock);
int b = true; // GLSL中的bool是4字节的,所以我们将它存为一个integer
glBufferSubData(GL_UNIFORM_BUFFER, 144, 4, &b);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
同样的步骤也能应用到Uniform块中其它的uniform变量上,但需要使用不同的范围参数。
所以,我们来展示一个真正使用Uniform缓冲对象的例子。如果我们回头看看之前所有的代码例子,我们不断地在使用3个矩阵:投影、观察和模型矩阵。在所有的这些矩阵中,只有模型矩阵会频繁变动。如果我们有多个着色器使用了这同一组矩阵,那么使用Uniform缓冲对象可能会更好。
我们会将投影和观察矩阵存储到一个叫做Matrices的Uniform块中。我们不会将模型矩阵存在这里,因为模型矩阵在不同的着色器中会不断改变,所以使用Uniform缓冲对象并不会带来什么好处。
#version 330 core
layout (location = 0) in vec3 aPos;
layout (std140) uniform Matrices
{
mat4 projection;
mat4 view;
};
uniform mat4 model;
void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
}
这里没什么特别的,除了我们现在使用的是一个std140布局的Uniform块。我们将在例子程序中,显示4个立方体,每个立方体都是使用不同的着色器程序渲染的。这4个着色器程序将使用相同的顶点着色器,但使用的是不同的片段着色器,每个着色器会输出不同的颜色。
unsigned int uniformBlockIndexRed = glGetUniformBlockIndex(shaderRed.ID, "Matrices");
unsigned int uniformBlockIndexGreen = glGetUniformBlockIndex(shaderGreen.ID, "Matrices");
unsigned int uniformBlockIndexBlue = glGetUniformBlockIndex(shaderBlue.ID, "Matrices");
unsigned int uniformBlockIndexYellow = glGetUniformBlockIndex(shaderYellow.ID, "Matrices");
glUniformBlockBinding(shaderRed.ID, uniformBlockIndexRed, 0);
glUniformBlockBinding(shaderGreen.ID, uniformBlockIndexGreen, 0);
glUniformBlockBinding(shaderBlue.ID, uniformBlockIndexBlue, 0);
glUniformBlockBinding(shaderYellow.ID, uniformBlockIndexYellow, 0);
unsigned int uboMatrices
glGenBuffers(1, &uboMatrices);
glBindBuffer(GL_UNIFORM_BUFFER, uboMatrices);
glBufferData(GL_UNIFORM_BUFFER, 2 * sizeof(glm::mat4), NULL, GL_STATIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glBindBufferRange(GL_UNIFORM_BUFFER, 0, uboMatrices, 0, 2 * sizeof(glm::mat4));
首先我们为缓冲分配了足够的内存,它等于glm::mat4大小的两倍。GLM矩阵类型的大小直接对应于GLSL中的mat4。接下来,我们将缓冲中的特定范围(在这里是整个缓冲)链接到绑定点0。
glm::mat4 projection = glm::perspective(glm::radians(45.0f), (float)width/(float)height, 0.1f, 100.0f);
glBindBuffer(GL_UNIFORM_BUFFER, uboMatrices);
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(glm::mat4), glm::value_ptr(projection));
glBindBuffer(GL_UNIFORM_BUFFER, 0);
这里我们将投影矩阵储存在Uniform缓冲的前半部分。在每次渲染迭代中绘制物体之前,我们会将观察矩阵更新到缓冲的后半部分:
glm::mat4 view = camera.GetViewMatrix();
glBindBuffer(GL_UNIFORM_BUFFER, uboMatrices);
glBufferSubData(GL_UNIFORM_BUFFER, sizeof(glm::mat4), sizeof(glm::mat4), glm::value_ptr(view));
glBindBuffer(GL_UNIFORM_BUFFER, 0);
Uniform缓冲对象的部分就结束了。每个包含了Matrices这个Uniform块的顶点着色器将会包含储存在uboMatrices中的数据。所以,如果我们现在要用4个不同的着色器绘制4个立方体,它们的投影和观察矩阵都会是一样的。
glBindVertexArray(cubeVAO);
shaderRed.use();
glm::mat4 model;
model = glm::translate(model, glm::vec3(-0.75f, 0.75f, 0.0f)); // 移动到左上角
shaderRed.setMat4("model", model);
glDrawArrays(GL_TRIANGLES, 0, 36);
// ... 绘制绿色立方体
// ... 绘制蓝色立方体
// ... 绘制黄色立方体
唯一需要设置的uniform只剩model uniform了。在像这样的场景中使用Uniform缓冲对象会让我们在每个着色器中都剩下一些uniform调用。最终的结果会是这样的:
因为修改了模型矩阵,每个立方体都移动到了窗口的一边,并且由于使用了不同的片段着色器,它们的颜色也不同。这只是一个很简单的情景,我们可能会需要使用Uniform缓冲对象,但任何大型的渲染程序都可能同时激活有上百个着色器程序,这时候Uniform缓冲对象的优势就会很大地体现出来了。
Uniform缓冲对象比起独立的uniform有很多好处。第一,一次设置很多uniform会比一个一个设置多个uniform要快很多。第二,比起在多个着色器中修改同样的uniform,在Uniform缓冲中修改一次会更容易一些。最后一个好处可能不会立即显现,如果使用Uniform缓冲对象的话,你可以在着色器中使用更多的uniform。OpenGL限制了它能够处理的uniform数量,这可以通过GL_MAX_VERTEX_UNIFORM_COMPONENTS来查询。当使用Uniform缓冲对象时,最大的数量会更高。所以,当你达到了uniform的最大数量时(比如再做骨骼动画(Skeletal Animation)的时候),你总是可以选择使用Uniform缓冲对象。
后期使用: opengl中uniform缓冲对象使用的示例代码如下:
\\ 1. bind the uniform block of the vertex shader to binding point 0;
unsigned int uniformBlockIndexRed = glGetUniformBlockIndex(shaderRed.ID, "Matrices");
unsigned int uniformBlockIndexGreen = glGetUniformBlockIndex(shaderGreen.ID, "Matrices");
unsigned int uniformBlockIndexBlue = glGetUniformBlockIndex(shaderBlue.ID, "Matrices");
unsigned int uniformBlockIndexYellow = glGetUniformBlockIndex(shaderYellow.ID, "Matrices");
glUniformBlockBinding(shaderRed.ID, uniformBlockIndexRed, 0);
glUniformBlockBinding(shaderGreen.ID, uniformBlockIndexGreen, 0);
glUniformBlockBinding(shaderBlue.ID, uniformBlockIndexBlue, 0);
glUniformBlockBinding(shaderYellow.ID, uniformBlockIndexYellow, 0);
\\ 2. create the uniform buffer object and bind the buffer to binding point 0
unsigned int uboMatrices
glGenBuffers(1, &uboMatrices);
glBindBuffer(GL_UNIFORM_BUFFER, uboMatrices);
glBufferData(GL_UNIFORM_BUFFER, 2 * sizeof(glm::mat4), NULL, GL_STATIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glBindBufferRange(GL_UNIFORM_BUFFER, 0, uboMatrices, 0, 2 * sizeof(glm::mat4));
\\ 3. store the corresponding matrixs to the uniform buffer object
glm::mat4 projection = glm::perspective(glm::radians(45.0f), (float)width/(float)height, 0.1f, 100.0f);
glm::mat4 view = camera.GetViewMatrix();
glBindBuffer(GL_UNIFORM_BUFFER, uboMatrices);
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(glm::mat4), glm::value_ptr(projection));
glBufferSubData(GL_UNIFORM_BUFFER, sizeof(glm::mat4), sizeof(glm::mat4), glm::value_ptr(view));
glBindBuffer(GL_UNIFORM_BUFFER, 0);
\\在渲染循环中
glBindVertexArray(cubeVAO);
shaderRed.use();
glm::mat4 model;
model = glm::translate(model, glm::vec3(-0.75f, 0.75f, 0.0f)); // move top-left
shaderRed.setMat4("model", model);
glDrawArrays(GL_TRIANGLES, 0, 36);
// ... draw Green Cube
// ... draw Blue Cube
// ... draw Yellow Cube
注意的是这里多个着色器的相同uniform块如果使用的是同一个uniform缓冲对象,那么数据也是一样的,一旦uniform缓冲对象中的数据更新后,其他着色器中使用的数据也就发生了变化。
参考链接:
1. learnopengl-高级GLSL