【YOLOV3-ASFF】

  1. 现状:目前多尺度特征融合基本使用的都是FPN,YOLOv3这种特征直接concat或者element-wise add方式,作者并不认为这种方式可以有效的融合不同尺度的特征。
  2. 思想:自适应特征融合方式(ASFF)

【YOLOV3-ASFF】_第1张图片

其中,最右边的绿色框是融合特征。其中X1, X2, X3分别为来自level1,level2,level3这三个层的特征。然后level1,level2,level3这三个层的特征分别乘上权重参数\alpha ^{3} \beta ^{3} \gamma^{3}并求和,就可以得到新的融合后的特征ASFF-3。

  • 实现

level1-level3特征图都需要resize到level1大小,学习一个融合权重,这样可以更好的学习不同尺度对预测特征图的贡献。

class ASFF(nn.Module): 
     def __init__(self, level, rfb=False, vis=False): 
        super(ASFF, self).__init__() 
        self.level = level 
        self.dim = [512, 256, 256] 
        self.inter_dim = self.dim[self.level] 
        # 每个level融合前,需要先调整到一样的尺度
        if level==0: 
            self.stride_level_1 = add_conv(256, self.inter_dim, 3, 2) 
            self.stride_level_2 = add_conv(256, self.inter_dim, 3, 2) 
            self.expand = add_conv(self.inter_dim, 1024, 3, 1) 
        elif level==1: 
            self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1) 
            self.stride_level_2 = add_conv(256, self.inter_dim, 3, 2) 
           self.expand = add_conv(self.inter_dim, 512, 3, 1) 
       elif level==2: 
           self.compress_level_0 = add_conv(512, self.inter_dim, 1, 1) 
           self.expand = add_conv(self.inter_dim, 256, 3, 1) 
       compress_c = 8 if rfb else 16  #when adding rfb, we use half number of channels to save memory 

       self.weight_level_0 = add_conv(self.inter_dim, compress_c, 1, 1) 
       self.weight_level_1 = add_conv(self.inter_dim, compress_c, 1, 1) 
       self.weight_level_2 = add_conv(self.inter_dim, compress_c, 1, 1) 

       self.weight_levels = nn.Conv2d(compress_c*3, 3, kernel_size=1, stride=1, padding=0) 
       self.vis= vis 
       
    def forward(self, x_level_0, x_level_1, x_level_2): 
        if self.level==0: 
           level_0_resized = x_level_0 
           level_1_resized = self.stride_level_1(x_level_1) 
 
           level_2_downsampled_inter =F.max_pool2d(x_level_2, 3, stride=2, padding=1) 
           level_2_resized = self.stride_level_2(level_2_downsampled_inter) 
 
       elif self.level==1: 
           level_0_compressed = self.compress_level_0(x_level_0) 
           level_0_resized =F.interpolate(level_0_compressed, scale_factor=2, mode='nearest') 
           level_1_resized =x_level_1 
           level_2_resized =self.stride_level_2(x_level_2) 
       elif self.level==2: 
           level_0_compressed = self.compress_level_0(x_level_0) 
           level_0_resized =F.interpolate(level_0_compressed, scale_factor=4, mode='nearest') 
           level_1_resized =F.interpolate(x_level_1, scale_factor=2, mode='nearest') 
          level_2_resized =x_level_2 
 
       level_0_weight_v = self.weight_level_0(level_0_resized) 
       level_1_weight_v = self.weight_level_1(level_1_resized) 
       level_2_weight_v = self.weight_level_2(level_2_resized) 
       levels_weight_v = torch.cat((level_0_weight_v, level_1_weight_v, level_2_weight_v),1) 
       # 学习的3个尺度权重
       levels_weight = self.weight_levels(levels_weight_v) 
       levels_weight = F.softmax(levels_weight, dim=1) 
       # 自适应权重融合
       fused_out_reduced = level_0_resized * levels_weight[:,0:1,:,:]+\ 
                           level_1_resized * levels_weight[:,1:2,:,:]+\ 
                           level_2_resized * levels_weight[:,2:,:,:] 
 
       out = self.expand(fused_out_reduced) 
 
       if self.vis: 
           return out, levels_weight, fused_out_reduced.sum(dim=1) 
       else: 
          return out 

 

  • 可解释性分析

从梯度反传角度分析,加入FPN后的链式法则是这样的

【YOLOV3-ASFF】_第2张图片

 

【YOLOV3-ASFF】_第3张图片

 

参考:

https://zhuanlan.zhihu.com/p/110205719

https://blog.csdn.net/weixin_42096202/article/details/103293579

你可能感兴趣的:(深度学习)