- Transposed convolution(2016 IEEE)
刘若里
论文阅读人工智能计算机视觉学习网络笔记
论文标题FullyConvolutionalNetworksforSemanticSegmentation论文作者EvanShelhamer,JonathanLong,TrevorDarrell发表日期2016年05月01日GB引用>ShelhamerEvan,LongJonathan,DarrellTrevor.FullyConvolutionalNetworksforSemanticSegme
- 10.PE导出表
蓝屏达人
PE文件结构windows
一:定位导出表PIMAGE_NT_HEADERS->OptionalHeader->DataDirectory[0]typedefstruct_IMAGE_DATA_DIRECTORY{DWORDVirtualAddress;//导出表的RVADWORDSize;//导出表大小(没用)}IMAGE_DATA_DIRECTORY,*PIMAGE_DATA_DIRECTORY;该结构的VirtualA
- TicTacToe Module
W_X_99515681
python开发语言
Homework2Releasev5.016/02/2025CONTENTS1TicTacToe12Contents32.1TicTacToeModule............................................32.2ReinforcementLearningPlayer.....................................62.3Require
- 46-886 Machine Learning Fundamentals
W_X_99515681
机器学习人工智能
46-886MachineLearningFundamentalsHW1Homework1Due:Sunday,March23,11:59pm•UploadyourassignmenttoCanvas(onlyonepersonperteamneedstosubmit)•Includeawriteupcontainingyouranswerstothequestionsbelow(andyourt
- Description of a Poisson Imagery Super Resolution Algorithm 论文阅读
青铜锁00
论文阅读Radar论文阅读
DescriptionofaPoissonImagerySuperResolutionAlgorithm1.研究目标与意义1.1研究目标1.2实际意义2.创新方法与模型2.1核心思路2.2关键公式与推导2.2.1贝叶斯框架与概率模型2.2.2MAP估计的优化目标2.2.3超分辨率参数α2.3对比传统方法的优势3.实验验证与结果3.1实验设计3.2关键结果4.未来研究方向(实波束雷达领域)4.1挑战
- Ubuntu 20.04 安装并使用Cursor
爱学习的小道长
AIubuntulinux运维pythonai
1.安装1.1下载cursor官网:https://www.cursor.com/cn点击下载LINUX查看下载下来的文件:$ls~/Downloads/Cursor-0.47.8-82ef0f61c01d079d1b7e5ab04d88499d5af500e3.deb.glibc2.25-x86_64.AppImage/home/xxx/Downloads/Cursor-0.47.8-82ef0
- 《基于自适应正负样本对比学习的特征提取框架》-核心公式提炼简洁版 2022年neural networks
阳光明媚大男孩
学习深度学习人工智能论文笔记
论文源地址以下是从文档中提取的关于“基于对比学习的特征提取框架(CL-FEFA)”中正负样本对比学习实现的技术细节,包括详细的数学公式、特征提取过程以及特征表示方式的说明。1.正负样本的定义与构造在CL-FEFA框架中,正负样本的定义是动态且自适应的,基于特征提取的结果,而不是预先固定的。这种自适应性是CL-FEFA区别于传统对比学习(如SimCLR、SupCon)的一个关键点。定义方式:指示矩阵
- AutoImageProcessor代码分析
fydw_715
Transformers人工智能
以下是对AutoImageProcessor类的整理,按照类属性、类方法、静态方法、实例属性和实例方法分类,并对每个方法的功能进行了描述。类属性无显式定义的类属性。全局方法IMAGE_PROCESSOR_MAPPING_NAMES1.遍历IMAGE_PROCESSOR_MAPPING_NAMES字典formodel_type,image_processorsinIMAGE_PROCESSOR_MA
- 【机器学习】机器学习四大分类
藓类少女
机器学习机器学习分类人工智能
机器学习的方法主要可以分为四大类,根据学习方式和数据标注情况进行分类:1.监督学习(SupervisedLearning)特点:有标注数据(即训练数据有明确的输入(X)和输出(Y))。学习目标是找到一个映射(f(X)\approxY)。适用于分类和回归问题。主要算法:分类(Classification):逻辑回归(LogisticRegression)支持向量机(SVM)朴素贝叶斯(NaïveBa
- 【图像去噪】论文精读:CVPR 2025 | DnLUT: Ultra-Efficient Color Image Denoising via Channel-Aware Lookup Tables
十小大
图像去噪深度学习计算机视觉人工智能图像处理论文阅读论文笔记
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言Abstract1.Introduction2.Relatedworks2.1.ColorImagedenoising2.2.ReplacingCNNwithLUT3
- 【Rust基础】使用Rust和WASM开发的图片压缩工具
勇敢牛牛_
rustwasm开发语言图片压缩
图片压缩工具使用rust+wasm开发了一个简易版的图片压缩工具,支持JPG、PNG、GIF、WEBP等图片格式,不限制大小,无需上传图片,完全在浏览器中执行。工具地址:https://eai.coderbox.cn/image-compression实现方式JPEG对原图进行量化,通过指定质量参数,控制压缩质量。PNG同样的进行量化,并重新将rgba颜色(如果原图是rgba)调整为8位索引颜色,
- docker避免容器中的内容被挂载的空目录覆盖(比如nginx的html目录)
dockervolume
我有一个镜像jb:1.0,镜像中/jb下有一些内容需要挂载到宿主机来dockervolumecreatejb_volumedockerrun--namejb-v/home/dcw/data:/data--mountsource=jb,target=/jb-itdjb:1.0如果想修改宿主机中的内容可以通过下面命令找到挂载的内容在宿主机的位置dockerinspectjbimage.png
- Picgo 配置--免费图床使用
三金C_C
工具’工具使用picgo图床
下载pigco,然后去github建一个仓库,可以命名为https://github.com/jacinli/image-hosting这是一个免费的图床方案使用了picgo+github仓库的方案可以配置CDN,强烈建议配置cdn(见最下)1.准备GitHub仓库创建仓库:登录GitHub,点击右上角的“+”号,选择“Newrepository”。给仓库取一个名字(比如image-hosting
- Ubuntu18.04之网络配置+域名配置+软件源配置+ssh免密登陆
那记忆微凉
Linux
网络配置ubuntu18.04网络配置较之前版本有较大改动,它弃用了/etc/networks/interface配置,真正的网络配置是在/etc/netplan/xxx.yaml中生效查看当前系统网口连结状态,使用ipa查看对应网口,如果状态不是down而是up,则选择改网口进行配置编辑/etc/netplan/xxx.yaml#注意,如果每个配置后面有内容,则:号后面需加一个空格,再加入自己的
- Redis大key
不7夜宵
redisbootstrap数据库
Redis大key基本概念,影响Redis大key指在Redis中存储了大量数据的键,它会对Redis的性能和内存管理产生影响。大key的定义与value的大小和元素数量有关,但这个定义并不是绝对的,而是相对的,具体取决于系统的使用场景和性能要求。大key通常有以下两种情况:Value存储占用空间大集合类型的Key中元素过多![[Pastedimage20250227151208.png]]造成的
- 深度学习 Deep Learning 第8章 深度学习优化
odoo中国
AI编程人工智能深度学习人工智能优化
深度学习第8章深度学习的优化章节概述本章深入探讨了深度学习中的优化技术,旨在解决模型训练过程中面临的各种挑战。优化是深度学习的核心环节,直接关系到模型的训练效率和最终性能。本章首先介绍了优化在深度学习中的特殊性,然后详细讨论了多种优化算法,包括随机梯度下降(SGD)、动量法、Nesterov动量法、AdaGrad、RMSProp和Adam等。此外,还探讨了参数初始化策略、自适应学习率方法以及二阶优
- 读书笔记五 ---大数据之路--数仓分层
qq_38215991
bigdata大数据
数据分层在流式数据模型中,数据模型整体上分为五层。ODS层跟离线系统的定义一样,ODS层属于操作数据层,是直接从业务系统采集过来的最原始数据(进行了数据清洗),包含了所有业务的变更过程,数据粒度也是最细的。在这一层,实时和离线在源头上是统一的,这样的好处是用同一份数据加工出来的指标,口径基本是统一的,可以更方便进行实时和离线问数据比对。例如:原始的订单变更记录数据、服务器引擎的访同日志。(原始数据
- YOLOV11|YOLO12改进系列指南
魔鬼面具
YOLO
基于Ultralytics的YOLO11|YOLO12改进目前自带的一些改进方案(持续更新)为了感谢各位对本项目的支持,本项目的赠品是yolov5-PAGCP通道剪枝算法.具体使用教程专栏改进汇总YOLO11系列二次创新系列ultralytics/cfg/models/11/yolo11-RevCol.yaml使用(ICLR2023)ReversibleColumnNetworks对yolo11主
- OpenGL.error.GLError: GLError( err = 12289,
AI算法网奇
python基础python宝典pythonopengl
目录报错信息:报错代码:测试代码:报错信息:libEGLwarning:DRI2:failedtocreatedriscreenlibEGLwarning:DRI2:failedtocreatedriscreenTraceback(mostrecentcalllast):File"/shared_disk/users/lbg/project/online/NeuralLocalizerFields
- 强化学习中策略网络模型设计与优化技巧
数字扫地僧
计算机视觉深度学习
I.引言强化学习(ReinforcementLearning,RL)是一种通过与环境交互,学习如何采取行动以最大化累积奖励的机器学习方法。策略网络(PolicyNetwork)是强化学习中一种重要的模型,它直接输出动作的概率分布或具体的动作。本篇博客将深入探讨策略网络的设计原则、优化技巧,并结合具体实例展示其应用。II.策略网络的基本概念A.策略网络的定义策略网络是一种神经网络,它接受当前状态作为
- nebula graph传统使用Docker进行项目发版
boy快快长大
解决问题合集NebulaGraph数据库dockerjava容器
nebulagraph传统使用Docker进行项目发版1.nebulagraph服务2.搭建ES集群3.注意事项3.1图数据库的启动顺序3.2模糊查询失效1.nebulagraph服务1.在测试服务器中执行如下命令dockercommit85b6e2b8xxxxxx_nebula_es:1.0.0.2执行dockerimages之后能看到新的镜像xxx_nebula_es:1.0.0.2这里将测试
- jmeter中,上传文件的MIME类型
小han的日常
jmeterjmeter
text/plain:用于纯文本文件,如.txt文件。text/html:用于HTML文档,即.html文件。application/msword:MicrosoftWord文档,即.doc和.docx文件。image/jpeg:JPEG图像,对应.jpg和.jpeg文件。image/png:PNG图像,对应.png文件。image/gif:GIF图像,对应.gif文件。
- `docker commit`和`docker tag`
NLstudy33
dockerjava容器
1.`dockercommit``dockercommit`是一个Docker命令,用于将一个正在运行的容器(Container)的状态提交为一个新的镜像(Image)。这类似于在版本控制系统中提交更改。作用•当你对一个容器进行了修改(例如安装了软件、修改了配置文件等),你可以使用`dockercommit`将这些更改保存为一个新的镜像。•这样,你可以基于这个新镜像创建更多的容器,而不需要重复相同
- OpenCV图像处理基础2
指尖下的技术
OpenCVopencv图像处理计算机视觉
接着上一篇OpenCV图像处理基础1继续说。图像阈值处理1、简单阈值处理ret,thresholded_image=cv2.threshold(image,thresh,maxval,cv2.THRESH_BINARY)thresh是阈值,maxval是最大值。2、自适应阈值处理thresholded_image=cv2.adaptiveThreshold(image,maxval,cv2.ADA
- 力扣刷题-热题100题-第20题(c++、python)
weixin_44505472
c++pythonleetcode
48.旋转图像-力扣(LeetCode)https://leetcode.cn/problems/rotate-image/?envType=study-plan-v2&envId=top-100-liked使用辅助矩阵直接创建一个新矩阵来装旋转好的矩阵,不过需要注意的是要将新矩阵的值赋值回原矩阵,在c++中是可以直接=,但python中要注意matrix[:]=matrix1才是赋值,直接=是改
- Python报错解决:img2pdf.AlphaChannelError: Refusing to work on images with alpha channel
定星照空
python人工智能
img2pdf.AlphaChannelError:Refusingtoworkonimageswithalphachannel-solved解决img2pdf模块不能上传含alpha通道透明度的图片的问题解决img2pdf模块PNG图片转PDF文件因alpha通道报错问题文章目录前言一、AlphaChannelError为什么出现?二、该种报错解决方法1.方法一:转化其他格式图片2.方法二:去除
- OpenGL ES 如何渲染 16bit 图像?
字节流动
OpenGLES3.0OpenGLES音视频图形渲染Androidc++
未经作者(微信ID:Byte-Flow)允许,禁止转载文章首发于公众号:字节流动最近有不少读者私信问OpenGLES如何处理16bit图像(P010)?然后我直接贴给他们一段在OpenGL环境下验证过的上传16bit图像数据的代码glTexImage2D(GL_TEXTURE_2D,0,GL_R16UI,width,height,0,GL_RED_INTEGER,GL_UNSIGNED_SHORT
- CBNet--一种新的目标检测的复合骨干网体系结构
weixin_45963617
深度学习系列
一、Introduction一般来说,在一个典型的基于CNN的目标检测器中,使用主干网络来提取检测对象的基本特征,该网络通常是为图像分类任务而设计的,并在ImageNet上预训练。毫无疑问,更强大的主干网可以带来更好的检测性能。尽管最先进的基于深度的大骨干网络的探测器取得了很好的结果,但仍有很大改进空间。此外,通过设计一个新的更强大的主干网络并在ImageNet上预训练来获取好的检测性能是十分昂贵
- 2025.03.22【读书笔记】| fastq-multx:高效barcode拆分数据解决工具
穆易青
读书笔记数据处理读书笔记linux运维服务器
文章目录1.工具介绍为什么需要`fastq-multx`?`fastq-multx`的特点2.安装方式通过源代码编译安装使用包管理器安装3.使用命令基本命令高级参数设置结语1.工具介绍在生物信息学的世界里,工具的选择至关重要。今天,我们要介绍的这个工具,就是fastq-multx,一个用于高效barcode去复用和demultiplex的解决方案。fastq-multx是一个专门设计用于处理高通量
- HTML5前端第七章节
NaZiMeKiY
HTML51024程序员节
本章节为前端网页页面实战,包含我们之前所学的全部内容一.创建项目目录1.网站根目录:网站根目录指的是存放网站的第一层文件夹,内部包含当前网站的所有素材,包含HTML,CSS,需要的素材图片等等2.根目录之下的文件夹(1).images文件夹:存放固定使用的图片素材(2).uploads文件夹:存放非固定使用的图片素材(3).CSS文件夹:存放CSS文件(使用link标签引入)在CSS文件夹中又分为
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc