工作流调度器azkaban
1 为什么需要工作流调度系统
1)一个完整的数据分析系统通常都是由大量任务单元组成:shell脚本程序,java程序,mapreduce程序、hive脚本等
2)各任务单元之间存在时间先后及前后依赖关系
3)为了很好地组织起这样的复杂执行计划,需要一个工作流调度系统来调度执行;
例如,我们可能有这样一个需求,某个业务系统每天产生20G原始数据,我们每天都要对其进行处理,处理步骤如下所示:
1、 通过Hadoop先将原始数据同步到HDFS上;
2、 借助MapReduce计算框架对原始数据进行转换,生成的数据以分区表的形式存储到多张Hive表中;
3、 需要对Hive中多个表的数据进行JOIN处理,得到一个明细数据Hive大表;
4、 将明细数据进行复杂的统计分析,得到结果报表信息;
5、 需要将统计分析得到的结果数据同步到业务系统中,供业务调用使用。
2 工作流调度实现方式
简单的任务调度:直接使用linux的crontab来定义;
复杂的任务调度:开发调度平台
或使用现成的开源调度系统,比如ooize、azkaban等
3 常见工作流调度系统
市面上目前有许多工作流调度器
在hadoop领域,常见的工作流调度器有Oozie, Azkaban,Cascading,Hamake等
4 Azkaban与Oozie对比
#功能
两者均可以调度mapreduce,pig,java,脚本工作流任务
两者均可以定时执行工作流任务
#工作流定义
Azkaban使用Properties文件定义工作流
Oozie使用XML文件定义工作流
#工作流传参
Azkaban支持直接传参,例如${input}
Oozie支持参数和EL表达式,例如${fs:dirSize(myInputDir)}
#定时执行
Azkaban的定时执行任务是基于时间的
Oozie的定时执行任务基于时间和输入数据
#资源管理
Azkaban有较严格的权限控制,如用户对工作流进行读/写/执行等操作
Oozie暂无严格的权限控制
#工作流执行
Azkaban有两种运行模式,分别是solo server mode(executor server和web server部署在同一台节点)和multi server mode(executor server和web server可以部署在不同节点)
Oozie作为工作流服务器运行,支持多用户和多工作流
#工作流管理
Azkaban支持浏览器以及ajax方式操作工作流
Oozie支持命令行、HTTP REST、Java API、浏览器操作工作流
5 Azkaban介绍
Azkaban是由Linkedin开源的一个批量工作流任务调度器。用于在一个工作流内以一个特定的顺序运行一组工作
和流程。Azkaban定义了一种KV文件格式来建立任务之间的依赖关系,并提供一个易于使用的web用户界面
维护和跟踪你的工作流。
它有如下功能特点:
#Web用户界面
#方便上传工作流
#方便设置任务之间的关系
#调度工作流
#认证/授权(权限的工作)
#能够杀死并重新启动工作流
#模块化和可插拔的插件机制
#项目工作区
#工作流和任务的日志记录和审计
6 azkaban实战
Azkaba内置的任务类型支持command、java
Command类型单一job示例
1、创建job描述文件
vi command.job
#command.job
type=command
command=echo 'hello'
2、将job资源文件打包成zip文件
zip command.job
3、通过azkaban的web管理平台创建project并上传job压缩包
首先创建project
上传zip包
4、启动执行该job
Command类型多job工作流flow
1、创建有依赖关系的多个job描述
第一个job:foo.job
# foo.job
type=command
command=echo foo
第二个job:bar.job依赖foo.job
# bar.job
type=command
dependencies=foo
command=echo bar
2、将所有job资源文件打到一个zip包中
3、在azkaban的web管理界面创建工程并上传zip包
4、启动工作流flow
HDFS操作任务
1、创建job描述文件
# fs.job
type=command
command=/home/hadoop/apps/hadoop-2.6.1/bin/hadoop fs -mkdir /azaz
2、将job资源文件打包成zip文件
3、通过azkaban的web管理平台创建project并上传job压缩包
4、启动执行该job
MAPREDUCE任务
Mr任务依然可以使用command的job类型来执行
1、创建job描述文件,及mr程序jar包(示例中直接使用hadoop自带的example jar)
# mrwc.job
type=command
command=/home/hadoop/apps/hadoop-2.6.1/bin/hadoop jar hadoop-mapreduce-examples-2.6.1.jar
wordcount /wordcount/input /wordcount/azout
2、将所有job资源文件打到一个zip包中
3、在azkaban的web管理界面创建工程并上传zip包
4、启动job
HIVE脚本任务
1、创建job描述文件和hive脚本
Hive脚本: test.sql
use default;
drop table aztest;
create table aztest(id int,name string) row format delimited fields terminated by ',';
load data inpath '/aztest/hiveinput' into table aztest;
create table azres as select * from aztest;
insert overwrite directory '/aztest/hiveoutput' select count(1) from aztest;
Job描述文件:hivef.job
# hivef.job
type=command
command=/home/hadoop/apps/hive/bin/hive -f 'test.sql'
2、将所有job资源文件打到一个zip包中
3、在azkaban的web管理界面创建工程并上传zip包
4、启动job