Kylin web界面 知识点介绍

Big Data Era:

1.More and more data becoming available on Hadoop
2.Limitations in existing Business Intelligence (BI) Tools
  Limited support for Hadoop
  Data size growing exponentially
  High latency of interactive queries
  Scale-Up architecture
3.Challenges to adopt Hadoop as interactive analysis system
  Majority of analyst groups are SQL savvy
  No mature SQL interface on Hadoop
  OLAP capability on Hadoop ecosystem not ready yet

 

Business Needs for Big Data Analysis

1.Sub-second query latency on billions of rows
2.ANSI SQL for both analysts and engineers
3.Full OLAP capability to offer advanced functionality
4.Seamless Integration with BI Tools
5.Support of high cardinality and high dimensions
6.High concurrency – thousands of end users
7.Distributed and scale out architecture for large data volume

 

Kylin is designed to accelerate 80+% analytics queries performance on Hadoop

Kylin web界面 知识点介绍_第1张图片

 

Technical Challenges:

1.Huge volume data
  Table scan
2.Big table joins
  Data shuffling
3.Analysis on different granularity
  Runtime aggregation expensive
4.Map Reduce job
  Batch processing

 

 

OLAP Cube – Balance between Space and Time

 

 

How Does Kylin Utilize Hadoop Components

1.Hive
  Input source
  Pre-join star schema during cube building
2.MapReduce
  Pre-aggregation metrics during cube building
3.HDFS
  Store intermediated files during cube building.
4.HBase
  Store data cube.
  Serve query on data cube.
  Coprocessor is used for query processing.

 

Cube Designer

Kylin web界面 知识点介绍_第2张图片

Kylin web界面 知识点介绍_第3张图片

 

 

 

Job Management

Kylin web界面 知识点介绍_第4张图片

Kylin web界面 知识点介绍_第5张图片

Kylin web界面 知识点介绍_第6张图片

Kylin web界面 知识点介绍_第7张图片

 

 

 

Query and Visualization

Kylin web界面 知识点介绍_第8张图片

Kylin web界面 知识点介绍_第9张图片

Kylin web界面 知识点介绍_第10张图片

 

 


Tableau Integration

Kylin web界面 知识点介绍_第11张图片

 

转载于:https://www.cnblogs.com/panpanwelcome/p/7896508.html

你可能感兴趣的:(Kylin web界面 知识点介绍)