- langchain `as_retriever` 方法
大多_C
langchainjava服务器
as_retriever方法是一个用于将VectorStore对象转换为VectorStoreRetriever对象的便捷方法。VectorStoreRetriever是一个检索类,用于从向量存储中查找和检索最相关的文档。这个方法接受多个可选参数来配置检索的行为。用法介绍参数search_type(Optional[str]):定义检索器应该执行的搜索类型。选项包括:"similarity":默认
- 【论文简介】Circle Loss: A Unified Perspective of Pair Similarity Optimization
萝莉狼
machinelearningcirclelossdeepfeaturelearning
CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization旷世cvpr2020的一篇文章,站在更高的视角,统一了deepfeaturelearning的两大基础loss:基于class-levellabel的loss(如softmax+crossentropy)和基于pair-wiselabel的loss(如tripletloss),指出了
- Circle Loss: A Unified Perspective of Pair Similarity Optimization简要阅读笔记
dailleson_
机器学习机器学习数据挖掘神经网络深度学习自然语言处理
1.背景常见的分类损失函数可以概括为减小类内距离sns_nsn,增大类间距离sps_psp。优化目标如下:min(sn−sp)min(s_n-s_p)min(sn−sp)2.存在的问题优化不够灵活。优化目标对sns_nsn和sps_psp的惩罚作用是相等的,二者的系数都为1。例如{sn,sp}={0.1,0.5}\{s_n,s_p\}=\{0.1,0.5\}{sn,sp}={0.1,0.5}。这个
- [论文笔记]Circle Loss: A Unified Perspective of Pair Similarity Optimization
愤怒的可乐
#文本匹配[论文]论文翻译/笔记自然语言处理论文阅读人工智能
引言为了理解CoSENT的loss,今天来读一下CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization。为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。这篇论文从对深度特征学习的成对相似度优化角度出发,旨在最大化同类之间的相似度sps_ps
- 向量数据库Faiss(Facebook AI Similarity Search)
shiming8879
数据库faiss人工智能
向量数据库Faiss(FacebookAISimilaritySearch)是FacebookAIResearch开发的一款高效且可扩展的相似性搜索和聚类库,专门用于处理大规模向量数据的搜索和检索任务。Faiss以其出色的性能和灵活性,在图像检索、文本搜索、推荐系统等多个领域得到了广泛应用。以下将详细介绍Faiss的搭建与使用过程,包括安装、基本使用、索引类型选择、性能优化及应用场景等方面。一、F
- 快速计算距离Annoy算法原理及Python使用
召唤师的峡谷
机器学习算法
快速计算距离Annoy算法基本原理高维稀疏数据进行快速相似查找,可以采用learningtohash参考:Minhashing&LSH&Simhash技术汇总,但高维稠密数据查找则采用annoy如何从海量文本中快速查找出相似的TopN文本Annoy(ApproximateNearestNeighborsOhYeah)快速算法,在实际应用中发现无论计算速度和准确性都非常不错。原始2D数据分布图:1.
- 2020-04-18
汪乔桉
HashMap底层实现原理及面试问题①HashMap的工作原理HashMap基于hashing原理,我们通过put()和get()方法储存和获取对象。当我们将键值对传递给put()方法时,它调用键对象的hashCode()方法来计算hashcode,让后找到bucket位置来储存值对象。当获取对象时,通过键对象的equals()方法找到正确的键值对,然后返回值对象。HashMap使用链表来解决碰撞
- sklearn:机器学习 分类特征编码category_encoders
Cachel wood
python机器学习和数据挖掘分类数据挖掘人工智能pythonpandassklearn机器学习
文章目录category_encoders简介OrdinalEncoder序列编码OneHotEncoder独热编码TargetEncoder目标编码BinaryEncoder二进制编码BaseNEncoder贝叶斯编码LeaveOneOutEncoder留一法HashingEncoder哈希编码CatBoostEncodercatboost目标编码CountEncoder频率编码WOEEncod
- Redis详解(六)渐进式rehash机制
fedorafrog
#NoSQL
在Redis中,键值对(Key-ValuePair)存储方式是由字典(Dict)保存的,而字典底层是通过哈希表来实现的。通过哈希表中的节点保存字典中的键值对。我们知道当HashMap中由于Hash冲突(负载因子)超过某个阈值时,出于链表性能的考虑,会进行Resize的操作。Redis也一样。在redis的具体实现中,使用了一种叫做渐进式哈希(rehashing)的机制来提高字典的缩放效率,避免re
- sklearn.preprocessing 特征编码汇总
Cachel wood
python机器学习和数据挖掘sklearn人工智能pythonpandasydata机器学习
文章目录常见特征种类one-hot编码特征哈希(`Featurehashing`)基于统计的类别编码对循环特征的编码目标编码(Targetencoding)K折目标编码(K-FoldTargetencoding)用于数据分析的特征可能有多种形式,需要将其合理转化成模型能够处理的形式,特别是对非数值的特征,特征编码就是在做这样的工作。常见特征种类二值数据:只有两种取值的变量(不一定是0/1,但是可以
- Vision Transformer及其变体(自用)
ST-Naive
transformer深度学习人工智能
0回顾Transformer0.1encoder在正式开始ViT之前,先来复习一遍transformer的核心机制相关的文章有很多,我选了一遍最通俗易懂的放在这:Transformer通俗笔记:从Word2Vec、Seq2Seq逐步理解到GPT、BERT所谓注意力机制,就是Attention=∑similarity(Query,Key)*Value,Q可以理解为单词在当前的表示,K为单词的标签,V
- 【推荐系统】DSSM双塔召回
sdbhewfoqi
推荐系统机器学习深度学习数据挖掘
召回综述:【推荐系统】推荐系统主流召回方法综述目录一、DSSM概念二、实践召回模型负例如何选择?是否做Norm?(应用trick)温度超参是什么?-->Loss要带温度超参2.1.美图架构图2.2.淘系架构图优化版本2.3.全民k歌架构图优化方法一、DSSM概念在推荐中的应用1、输入层wordhashing2、中间层(常用的DNN模型)3、匹配层将doc和query(item和user)的embe
- [转载]一个速度快内存占用小的一致性哈希算法
gensmusic
转载自:http://colobu.com/2016/03/22/jump-consistent-hash/一个速度快内存占用小的一致性哈希算法JumpConsistentHash一致性哈希最早由MIT的Karger提出,在发表于1997年的论文ConsistentHashingandRandomTrees:DistributedCachingProtocolsforRelievingHotSpo
- 【SparkML实践7】特征选择器FeatureSelector
周润发的弟弟
Spark机器学习spark-ml
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。FeatureSelectorsVectorSlicerVe
- 论文阅读-在分布式数据库环境中对哈希算法进行负载均衡基准测试
向来痴_
分布式数据库负载均衡论文阅读
论文名称:BenchmarkingHashingAlgorithmsforLoadBalancinginaDistributedDatabaseEnvironment摘要现代高负载应用使用多个数据库实例存储数据。这样的架构需要数据一致性,并且确保数据在节点之间均匀分布很重要。负载均衡被用来实现这些目标。几乎所有负载均衡系统的核心都是哈希算法。自经典一致性哈希引入以来,已经为此目的设计了许多算法。负
- An End-to-End Learning-Based Metadata Management Approach for Distributed File Systems——论文阅读
妙BOOK言
论文阅读论文阅读分布式
TC2022Paper,元数据论文阅读汇总“multiplemetadataserver(MDS)”多个元数据服务器“localitypreservinghashing(LPH)”局部保持哈希“MultipleSubsetSumProblem(MSSP).”多子集和问题“polynomial-timeapproximationscheme(PTAS)”多项式时间近似方法背景分布式元数据的挑战目前的
- 【Spark实践6】特征转换FeatureTransformers实践Scala版--补充算子
周润发的弟弟
Spark机器学习sparkscala大数据
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。FeatureTransformersIndexToStri
- 【SparkML实践5】特征转换FeatureTransformers实战scala版
周润发的弟弟
Spark机器学习spark-mlscala开发语言
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。本章节主要讲转换1FeatureTransformersTo
- 【SparkML系列3】特征提取器TF-IDF、Word2Vec和CountVectorizer
周润发的弟弟
spark-mltf-idfword2vec
本节介绍了用于处理特征的算法,大致可以分为以下几组:提取(Extraction):从“原始”数据中提取特征。转换(Transformation):缩放、转换或修改特征。选择(Selection):从更大的特征集中选择一个子集。局部敏感哈希(LocalitySensitiveHashing,LSH):这类算法结合了特征转换的方面与其他算法。###FeatureExtractors(特征提取器)###
- UniAdapter: Unified Parameter-Efficient Transfer Learning for Cross-modal Modeling
qgh1223
有效参数迁移人工智能迁移学习深度学习
UniAdapter:UnifiedParameter-EfficientTransferLearningforCross-modalModeling论文链接:https://arxiv.org/pdf/2302.06605.pdf源码链接:https://hub.nuaa.cf/RERV/UniAdapter简介预训练-微调范式在自然语言处理,计算机视觉和多模态建模中取得了巨大的成功,其中模型首
- 使用spark mllib训练中文文本分类器的
DreamNotOver
spark-ml中文分类
importorg.apache.spark.mllib.classification.NaiveBayesimportorg.apache.spark.mllib.feature.HashingTFimportorg.apache.spark.mllib.linalg.Vectorsimportorg.apache.spark.sql.functions._objectChineseTextCl
- 使用 Spark MLlib 使用 jieba 分词训练中文分类器
DreamNotOver
spark-ml中文分类集群
importorg.apache.spark.ml.classification.NaiveBayesimportorg.apache.spark.ml.feature.HashingTFimportorg.apache.spark.sql.functions._importjieba.{JiebaSegmenter,WordPunctTokenizer}objectChineseTextClas
- OpenAI ChatGPT-4开发笔记2024-07:Embedding之Text Similarity文本相似度
aiXpert
笔记embedding
语义相似性semanticsimilarity背景结果背景OpenAIhasmadewavesonlinewithitsinnovativeembeddingandtranscriptionmodels,leadingtobreakthroughsinNLPandspeechrecognition.Thesemodelsenhanceaccuracy,efficiency,andflexibili
- How To Write Shared Libraries(10)
i_need_job
1.5.2SymbolRelocations(3)Tomeasuretheeffectivenessofthehashingtwonumbersareimportant:•Theaveragechainlengthforasuccessfullookup.•Theaveragechainlengthforanunsuccessfullookup.度量hash效率两个维度:查找到的平均链长度。查找失
- Kong工作原理 - 负载均衡 - 负载均衡算法
费曼乐园
Kongkonggateway
负载均衡器支持以下负载均衡算法:1.轮询(Round-robin)2.一致性哈希(ConsistentHashing)3.最少连接(LeastConnections)4.延迟(Latency)这些算法仅在使用upstream实体时可用,详见高级负载均衡。注意:对于所有这些算法,重要的是要了解如何设置每个后端的权重和端口。轮询轮询算法将以加权方式进行。它在结果上与基于DNS的负载均衡相同,但由于它是
- Image stitching using double features-based global similarity constraint and improved seam-cutting
十小大
图像拼接论文精读计算机视觉图像拼接imagestitchingImageStitching图像处理论文阅读论文笔记
第一次来请先看这篇文章:【图像拼接(ImageStitching)】关于【图像拼接论文精读】专栏的相关说明,包含专栏使用说明、创新思路分享等(不定期更新)图像拼接系列相关论文精读SeamCarvingforContent-AwareImageResizingAs-Rigid-As-PossibleShapeManipulationAdaptiveAs-Natural-As-PossibleImag
- 【图像拼接】论文精读:Natural Image Stitching with the Global Similarity Prior(NISwGSP/GSP/NIS)
十小大
图像拼接论文精读图像拼接imagestitchingImageStitching图像处理计算机视觉
第一次来请先看这篇文章:【图像拼接(ImageStitching)】关于【图像拼接论文精读】专栏的相关说明,包含专栏使用说明、创新思路分享等(不定期更新)图像拼接系列相关论文精读SeamCarvingforContent-AwareImageResizingAs-Rigid-As-PossibleShapeManipulationAdaptiveAs-Natural-As-PossibleImag
- 每日一词42/2018.11.13/parallel
Vichee
1.释义:apersonorthingthatissimilartoanother2.理解:形容词,“与…平行的”;名词,“平行线”,引申意为“相似处、共性”。在口语和写作中,想描述两个事物的共性,除了用“similarity”外,还可用“parallel”替换。常用用法:todrawparallels/aparallelbetweenAandB.3.应用:1)《牛津英语常用搭配》:direct/
- PAT甲级A1078---素数
1nvad3r
1078Hashing(25分)1078分析:给一个mszie和n个数,要求输出每一个数在散列表中的位置。使用正向平方探测法。如果msize不是质数,则往上寻找一个最小的质数替代。使用hashTable记录每个位置是否存放值。注意正向平方探测的方法是M=(a+step*step)%msize,step从1一直增长到msize(可以证明如果达到msize时还无法插入,则这个元素无法被插入)。C++:
- Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News
卫卫卫
虚假信息检测pytorch安全
检测跨模态不一致以防范神经性假新闻在网上大规模传播旨在误导或欺骗普通民众的虚假信息是一个重大的社会问题。图像、视频和自然语言生成模型的快速发展只会加剧这种情况,并加剧我们对有效防御机制的需求。虽然已经提出了现有的方法来防御神经假新闻,但它们通常局限于非常有限的环境,即文章只有文本和元数据,如标题和作者。在本文中,我们介绍了一项更现实、更具挑战性的任务,即防御机器生成的新闻,其中也包括图像和图像标题
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>