MATLAB消除曲线毛刺Outlier Detection and Removal [hampel]

MATLAB消除曲线毛刺Outlier Detection and Removal [hampel]

function [YY, I, Y0, LB, UB, ADX, NO] = hampel(X, Y, DX, T, varargin)

% HAMPEL Hampel Filter.

% HAMPEL(X,Y,DX,T,varargin) returns the Hampel filtered values of the

% elements in Y. It was developed to detect outliers in a time series,

% but it can also be used as an alternative to the standard median

% filter.

%

% References

% Chapters 1.4.2, 3.2.2 and 4.3.4 in Mining Imperfect Data: Dealing with

% Contamination and Incomplete Records by Ronald K. Pearson.

%

% Acknowledgements

% I would like to thank Ronald K. Pearson for the introduction to moving

% window filters. Please visit his blog at:

% http://exploringdatablog.blogspot.com/2012/01/moving-window-filters-and

% -pracma.html

%

% X,Y are row or column vectors with an equal number of elements.

% The elements in Y should be Gaussian distributed.

%

% Input DX,T,varargin must not contain NaN values!

%

% DX,T are optional scalar values.

% DX is a scalar which defines the half width of the filter window.

% It is required that DX > 0 and DX should be dimensionally equivalent to

% the values in X.

% T is a scalar which defines the threshold value used in the equation

% |Y - Y0| > T*S0.

%

% Standard Parameters for DX and T:

% DX = 3*median(X(2:end)-X(1:end-1));

% T = 3;

%

% varargin covers addtional optional input. The optional input must be in

% the form of 'PropertyName', PropertyValue.

% Supported PropertyNames:

% 'standard': Use the standard Hampel filter.

% 'adaptive': Use an experimental adaptive Hampel filter. Explained under

% Revision 1 details below.

%

% Supported PropertyValues: Scalar value which defines the tolerance of

% the adaptive filter. In the case of standard Hampel filter this value

% is ignored.

%

% Output YY,I,Y0,LB,UB,ADX are column vectors containing Hampel filtered

% values of Y, a logical index of the replaced values, nominal data,

% lower and upper bounds on the Hampel filter and the relative half size

% of the local window, respectively.

%

% NO is a scalar that specifies the Number of Outliers detected.

%

% Examples

% 1. Hampel filter removal of outliers

% X = 1:1000; % Pseudo Time

% Y = 5000 + randn(1000, 1); % Pseudo Data

% Outliers = randi(1000, 10, 1); % Index of Outliers

% Y(Outliers) = Y(Outliers) + randi(1000, 10, 1); % Pseudo Outliers

% [YY,I,Y0,LB,UB] = hampel(X,Y);

%

% plot(X, Y, 'b.'); hold on; % Original Data

% plot(X, YY, 'r'); % Hampel Filtered Data

% plot(X, Y0, 'b--'); % Nominal Data

% plot(X, LB, 'r--'); % Lower Bounds on Hampel Filter

% plot(X, UB, 'r--'); % Upper Bounds on Hampel Filter

% plot(X(I), Y(I), 'ks'); % Identified Outliers

%

% 2. Adaptive Hampel filter removal of outliers

% DX = 1; % Window Half size

% T = 3; % Threshold

% Threshold = 0.1; % AdaptiveThreshold

% X = 1:DX:1000; % Pseudo Time

% Y = 5000 + randn(1000, 1); % Pseudo Data

% Outliers = randi(1000, 10, 1); % Index of Outliers

% Y(Outliers) = Y(Outliers) + randi(1000, 10, 1); % Pseudo Outliers

% [YY,I,Y0,LB,UB] = hampel(X,Y,DX,T,'Adaptive',Threshold);

%

% plot(X, Y, 'b.'); hold on; % Original Data

% plot(X, YY, 'r'); % Hampel Filtered Data

% plot(X, Y0, 'b--'); % Nominal Data

% plot(X, LB, 'r--'); % Lower Bounds on Hampel Filter

% plot(X, UB, 'r--'); % Upper Bounds on Hampel Filter

% plot(X(I), Y(I), 'ks'); % Identified Outliers

%

% 3. Median Filter Based on Filter Window

% DX = 3; % Filter Half Size

% T = 0; % Threshold

% X = 1:1000; % Pseudo Time

% Y = 5000 + randn(1000, 1); % Pseudo Data

% [YY,I,Y0] = hampel(X,Y,DX,T);

%

% plot(X, Y, 'b.'); hold on; % Original Data

% plot(X, Y0, 'r'); % Median Filtered Data

%

% Version: 1.5

% Last Update: 09.02.2012

%

% Copyright (c) 2012:

% Michael Lindholm Nielsen

%

% --- Revision 5 --- 09.02.2012

% (1) Corrected potential error in internal median function.

% (2) Removed internal "keyboard" command.

% (3) Optimized internal Gauss filter.

%

% --- Revision 4 --- 08.02.2012

% (1) The elements in X and Y are now temporarily sorted for internal

% computations.

% (2) Performance optimization.

% (3) Added Example 3.

%

% --- Revision 3 --- 06.02.2012

% (1) If the number of elements (X,Y) are below 2 the output YY will be a

% copy of Y. No outliers will be detected. No error will be issued.

%

% --- Revision 2 --- 05.02.2012

% (1) Changed a calculation in the adaptive Hampel filter. The threshold

% parameter is now compared to the percentage difference between the

% j'th and the j-1 value. Also notice the change from Threshold = 1.1

% to Threshold = 0.1 in example 2 above.

% (2) Checks if DX,T or varargin contains NaN values.

% (3) Now capable of ignoring NaN values in X and Y.

% (4) Added output Y0 - Nominal Data.

%

% --- Revision 1 --- 28.01.2012

% (1) Replaced output S (Local Scaled Median Absolute Deviation) with

% lower (LB) and upper (UB) bounds on the Hampel filter.

% (2) Added option to use an experimental adaptive Hampel filter.

% The Principle behind this filter is described below.

% a) The filter changes the local window size until the change in the

% local scaled median absolute deviation is below a threshold value

% set by the user. In the above example (2) this parameter is set to

% 0.1 corresponding to a maximum acceptable change of 10% in the

% local scaled median absolute deviation. This process leads to three

% locally optimized parameters Y0 (Local Nominal Data Reference

% value), S0 (Local Scale of Natural Variation), ADX (Local Adapted

% Window half size relative to DX).

% b) The optimized parameters are then smoothed by a Gaussian filter with

% a standard deviation of DX=2*median(XSort(2:end) - XSort(1:end-1)).

% This means that local values are weighted highest, but nearby data

% (which should be Gaussian distributed) is also used in refining

% ADX, Y0, S0.

%

% --- Revision 0 --- 26.01.2012

% (1) Release of first edition.

 

%% Error Checking

% Check for correct number of input arguments

if nargin < 2

error('Not enough input arguments.');

end

 

% Check that the number of elements in X match those of Y.

if ~isequal(numel(X), numel(Y))

error('Inputs X and Y must have the same number of elements.');

end

 

% Check that X is either a row or column vector

if size(X, 1) == 1

X = X'; % Change to column vector

elseif size(X, 2) == 1

else

error('Input X must be either a row or column vector.')

end

 

% Check that Y is either a row or column vector

if size(Y, 1) == 1

Y = Y'; % Change to column vector

elseif size(Y, 2) == 1

else

error('Input Y must be either a row or column vector.')

end

 

% Sort X

SortX = sort(X);

 

% Check that DX is of type scalar

if exist('DX', 'var')

if ~isscalar(DX)

error('DX must be a scalar.');

elseif DX < 0

error('DX must be larger than zero.');

end

else

DX = 3*median(SortX(2:end) - SortX(1:end-1));

end

 

% Check that T is of type scalar

if exist('T', 'var')

if ~isscalar(T)

error('T must be a scalar.');

end

else

T = 3;

end

 

% Check optional input

if isempty(varargin)

Option = 'standard';

elseif numel(varargin) < 2

error('Optional input must also contain threshold value.');

else

% varargin{1}

if ischar(varargin{1})

Option = varargin{1};

else

error('PropertyName must be of type char.');

end

% varargin{2}

if isscalar(varargin{2})

Threshold = varargin{2};

else

error('PropertyValue value must be a scalar.');

end

end

 

% Check that DX,T does not contain NaN values

if any(isnan(DX) | isnan(T))

error('Inputs DX and T must not contain NaN values.');

end

 

% Check that varargin does not contain NaN values

CheckNaN = cellfun(@isnan, varargin, 'UniformOutput', 0);

if any(cellfun(@any, CheckNaN))

error('Optional inputs must not contain NaN values.');

end

 

% Detect/Ignore NaN values in X and Y

IdxNaN = isnan(X) | isnan(Y);

X = X(~IdxNaN);

Y = Y(~IdxNaN);

 

%% Calculation

% Preallocation

YY = Y;

I = false(size(Y));

S0 = NaN(size(YY));

Y0 = S0;

ADX = repmat(DX, size(Y));

 

if numel(X) > 1

switch lower(Option)

case 'standard'

for i = 1:numel(Y)

% Calculate Local Nominal Data Reference value

% and Local Scale of Natural Variation

[Y0(i), S0(i)] = localwindow(X, Y, DX, i);

end

case 'adaptive'

% Preallocate

Y0Tmp = S0;

S0Tmp = S0;

DXTmp = (1:numel(S0))'*DX; % Integer variation of Window Half Size

 

% Calculate Initial Guess of Optimal Parameters Y0, S0, ADX

for i = 1:numel(Y)

% Setup/Reset temporary counter etc.

j = 1;

S0Rel = inf;

while S0Rel > Threshold

% Calculate Local Nominal Data Reference value

% and Local Scale of Natural Variation using DXTmp window

[Y0Tmp(j), S0Tmp(j)] = localwindow(X, Y, DXTmp(j), i);

 

% Calculate percent difference relative to previous value

if j > 1

S0Rel = abs((S0Tmp(j-1) - S0Tmp(j))/(S0Tmp(j-1) + S0Tmp(j))/2);

end

 

% Iterate counter

j = j + 1;

end

Y0(i) = Y0Tmp(j - 2); % Local Nominal Data Reference value

S0(i) = S0Tmp(j - 2); % Local Scale of Natural Variation

ADX(i) = DXTmp(j - 2)/DX; % Local Adapted Window size relative to DX

end

 

% Gaussian smoothing of relevant parameters

DX = 2*median(SortX(2:end) - SortX(1:end-1));

ADX = smgauss(X, ADX, DX);

S0 = smgauss(X, S0, DX);

Y0 = smgauss(X, Y0, DX);

otherwise

error('Unknown option ''%s''.', varargin{1});

end

end

 

%% Prepare Output

UB = Y0 + T*S0; % Save information about local scale

LB = Y0 - T*S0; % Save information about local scale

Idx = abs(Y - Y0) > T*S0; % Index of possible outlier

YY(Idx) = Y0(Idx); % Replace outliers with local median value

I(Idx) = true; % Set Outlier detection

NO = sum(I); % Output number of detected outliers

 

% Reinsert NaN values detected at error checking stage

if any(IdxNaN)

[YY, I, Y0, LB, UB, ADX] = rescale(IdxNaN, YY, I, Y0, LB, UB, ADX);

end

 

%% Built-in functions

function [Y0, S0] = localwindow(X, Y, DX, i)

% Index relevant to Local Window

Idx = X(i) - DX <= X & X <= X(i) + DX;

 

% Calculate Local Nominal Data Reference Value

Y0 = median(Y(Idx));

 

% Calculate Local Scale of Natural Variation

S0 = 1.4826*median(abs(Y(Idx) - Y0));

end

 

function M = median(YM)

% Isolate relevant values in Y

YM = sort(YM);

NYM = numel(YM);

 

% Calculate median

if mod(NYM,2) % Uneven

M = YM((NYM + 1)/2);

else % Even

M = (YM(NYM/2)+YM(NYM/2+1))/2;

end

end

 

function G = smgauss(X, V, DX)

% Prepare Xj and Xk

Xj = repmat(X', numel(X), 1);

Xk = repmat(X, 1, numel(X));

 

% Calculate Gaussian weight

Wjk = exp(-((Xj - Xk)/(2*DX)).^2);

 

% Calculate Gaussian Filter

G = Wjk*V./sum(Wjk,1)';

end

 

function varargout = rescale(IdxNaN, varargin)

% Output Rescaled Elements

varargout = cell(nargout, 1);

for k = 1:nargout

Element = varargin{k};

 

if islogical(Element)

ScaledElement = false(size(IdxNaN));

elseif isnumeric(Element)

ScaledElement = NaN(size(IdxNaN));

end

 

ScaledElement(~IdxNaN) = Element;

varargout(k) = {ScaledElement};

end

end

end

 
View Code

hampel.m

转载于:https://www.cnblogs.com/gisalameda/p/8330145.html

你可能感兴趣的:(MATLAB消除曲线毛刺Outlier Detection and Removal [hampel])