题目背景
pdf题面和大样例链接:http://pan.baidu.com/s/1cawM7c 密码:xgxv
丹青千秋酿,一醉解愁肠。
无悔少年枉,只愿壮志狂。
题目描述
小 F 很喜欢数学,但是到了高中以后数学总是考不好。
有一天,他在数学课上发起了呆;他想起了过去的一年。一年前,当他初识算法竞赛的 时候,觉得整个世界都焕然一新。这世界上怎么会有这么多奇妙的东西?曾经自己觉得难以 解决的问题,被一个又一个算法轻松解决。
小 F 当时暗自觉得,与自己的幼稚相比起来,还有好多要学习的呢。
一年过去了,想想都还有点恍惚。
他至今还能记得,某天晚上听着入阵曲,激动地睡不着觉,写题写到鸡鸣时分都兴奋不 已。也许,这就是热血吧。
也就是在那个时候,小 F 学会了矩阵乘法。让两个矩阵乘几次就能算出斐波那契数列的 第 10^{100}10100 项,真是奇妙无比呢。
不过,小 F 现在可不想手算矩阵乘法——他觉得好麻烦。取而代之的,是一个简单的小 问题。他写写画画,画出了一个 n \times mn×m 的矩阵,每个格子里都有一个不超过 kk 的正整数。
小 F 想问问你,这个矩阵里有多少个不同的子矩形中的数字之和是 kk 的倍数? 如果把一个子矩形用它的左上角和右下角描述为 (x_1,y_1,x_2,y_2)(x1,y1,x2,y2),其中x_1 \le x_2,y_1 \le y_2x1≤x2,y1≤y2; 那么,我们认为两个子矩形是不同的,当且仅当他们以 (x_1,y_1,x_2,y_2)(x1,y1,x2,y2) 表示时不同;也就是 说,只要两个矩形以 (x_1,y_1,x_2,y_2)(x1,y1,x2,