- NUS:LLM表格数据建模综述
标题:LanguageModelingonTabularData:ASurveyofFoundations,TechniquesandEvolution来源:arXiv,2408.10548摘要表格数据是一种跨领域的流行数据类型,由于其异构性和复杂的结构关系,带来了独特的挑战。在表格数据分析中实现高预测性能和鲁棒性对许多应用程序具有重大前景。受自然语言处理,特别是转换器架构的最新进展的影响,出现了
- 量子计算与AI融合的技术突破与实践路径
量子计算与人工智能的融合正开启一个全新的技术纪元,这种"量智融合"不是简单的技术叠加,而是多领域、多学科的横向连接,通过协同创新实现非线性增长。本文将深入探讨这一领域的最新进展、技术实现路径以及行业应用案例。电子-光子-量子一体化芯片:硬件基础突破2025年7月,美国波士顿大学、加州大学伯克利分校和西北大学团队联合开发出全球首个电子-光子-量子一体化芯片系统。这一突破性成果发表在《自然·电子学》杂
- 神经形态芯片提升实时处理能力的技术路径及2025年最新进展
一、事件驱动处理机制的颠覆性革新1.异步脉冲编码范式神经形态芯片通过脉冲时间编码(TemporalCoding)实现生物启发的信息传递模式:s_i(t)=\sum_{k}\delta(t-t_i^{(k)})其中s_i(t)为第i个神经元的脉冲序列,t_i^{(k)}表示第k次脉冲时间。与传统同步时钟驱动架构相比,这种事件驱动机制仅在输入信号超过阈值时激活,使得2025年最新芯片(如IntelLo
- 深入解读 Qwen3 技术报告(一):引言
小爷毛毛(卓寿杰)
大模型AIGC深度学习基础/原理人工智能自然语言处理python语言模型深度学习
重磅推荐专栏:《大模型AIGC》《课程大纲》《知识星球》本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和StableDiffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展1.引言:迎接大型语言模型的新纪元我们正处在一个由人工智能(AI
- 开源的人像动画生成工具LivePortrait
研创通之逍遥峰
图像处理人工智能作画
LivePortrait是由快手科技联合中国科学技术大学和复旦大学共同开发的一款先进AI驱动肖像动画工具,它能够将静态的人像照片转化为带有真实面部表情和头部运动的动态视频。这项技术代表了当前AI生成内容(AIGC)领域的最新进展,通过创新的算法设计和高效的计算框架,为用户提供了强大且易用的动画生成能力。以下将从技术原理、核心功能、应用场景、使用方法和比较优势等多个维度,全面介绍这一工具。LiveP
- 机器学习在智能金融风险评估中的应用:信用评分与欺诈检测
Blossom.118
机器学习与人工智能机器人机器学习人工智能python深度学习sklearn计算机视觉
在金融行业,风险评估是确保金融机构稳健运营的关键环节。随着大数据和机器学习技术的快速发展,金融机构开始探索如何利用机器学习算法来提高风险评估的准确性和效率。本文将探讨机器学习在智能金融风险评估中的应用,特别是信用评分和欺诈检测方面的最新进展,并分析其带来的机遇和挑战。一、智能金融风险评估中的信用评分(一)传统信用评分方法的局限性传统的信用评分主要依赖于人工规则和简单的统计模型,如逻辑回归。这些方法
- 聚象生活APP最新进展:公布解决方案积极应对,全力保障用户权益
弃***惜
生活
一、事件最新动态:处理方案已公布近日,聚象生活APP及其关联主体山西光恒建筑工程有限公司疑似发布公告,针对线上惠农助农项目运营调整问题提出具体解决方案。据多方信息显示,该公司正积极与用户沟通协商,力求妥善解决相关问题。这一积极态度表明,聚象生活APP正努力维护用户权益,推动事件向好的方向发展。根据天眼查公开信息,山西光恒建筑工程有限公司成立于2018年,注册资本5000万元,此前主要承接市政工程项
- 自然语言处理(NLP)中的文本生成控制技术
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据自然语言处理easyui人工智能ai
自然语言处理(NLP)中的文本生成控制技术关键词:文本生成、可控生成、语言模型、Prompt工程、解码策略、条件控制、评估指标摘要:本文深入探讨自然语言处理中文本生成控制技术的最新进展。我们将从基础概念出发,系统分析各种控制方法的原理和实现,包括Prompt设计、解码策略优化、条件控制机制等核心内容。文章将结合数学模型、算法实现和实际案例,全面展示如何实现高质量、可控的文本生成,并探讨该领域面临的
- 浅谈卷积神经网络(CNN)
cyc&阿灿
cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetworks,CNN)作为深度学习领域最具影响力的架构之一,已在计算机视觉、自然语言处理、医学影像分析等领域取得了革命性突破。本文将系统全面地剖析CNN的核心原理、关键组件、经典模型、数学基础、训练技巧以及最新进展,通过理论解析与代码实践相结合的方式,帮助读者深入掌握这一重要技术。一、CNN基础与核心思想1.1传统神经网络的局限性在处理图像等
- 《知识图谱发展报告(2018)》思维导图精要
任我心意
本文还有配套的精品资源,点击获取简介:《知识图谱发展报告(2018)》通过思维导图形式的.xmind文件,直观呈现了知识图谱的核心概念、构建流程和应用实例。该报告由中国中文信息学会语言与知识计算专委会编写,全面总结了知识图谱领域的最新进展、技术趋势和应用案例。思维导图将复杂的知识图谱信息通过层次和关联的方式清晰展现,特别强调了三元组、本体、SPARQL查询语言、知识抽取等基础知识,以及知识图谱构建
- 5、 探讨计算、通信与控制领域的最新进展
Aurora曙光
探索计算通信与控制的前沿进展计算技术通信技术控制技术
探讨计算、通信与控制领域的最新进展1引言在当今快速发展的科技领域,计算、通信和控制技术的融合已经成为了推动社会进步的重要力量。从智能家居到自动驾驶汽车,从工业自动化到智慧城市,这些技术不仅改变了我们的生活方式,也在不断塑造着未来的社会形态。本文将深入探讨计算、通信和控制领域的最新进展,重点介绍Cohen-Sutherland线段裁剪算法的改进、视图选择优化算法以及智能代理架构在医疗诊断系统中的应用
- 基于 LLM 的网络钓鱼网站检测多代理框架
hao_wujing
网络
大家读完觉得有帮助记得及时关注和点赞!!!抽象网络钓鱼网站继续构成重大的网络安全威胁,通常利用欺骗性结构、品牌冒充和社会工程策略来逃避检测。虽然大型语言模型(LLM)的最新进展通过上下文理解改进了网络钓鱼检测,但大多数现有方法都依赖于面临幻觉风险的单代理分类,并且缺乏可解释性或稳健性。为了解决这些限制,我们提出了PhishDebate,这是一个基于模块化的多代理LLM辩论框架,用于网络钓鱼网站检测
- 深入解读Qwen3技术报告(三):深入剖析Qwen3模型架构
小爷毛毛(卓寿杰)
大模型AIGC深度学习基础/原理架构人工智能深度学习语言模型自然语言处理
重磅推荐专栏:《大模型AIGC》《课程大纲》《知识星球》本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和StableDiffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展3.深入剖析Qwen3模型架构大型语言模型的架构设计直接决定了其
- 智能体应用最新进展:从单点工具到企业级系统的架构演进
金融RPA机器人丨实在智能
架构
在当今数字化与智能化飞速发展的时代,智能体应用正经历着从单点工具到企业级系统的深刻架构演进。这一转变不仅革新了企业运营的方式,更重塑了行业的竞争格局。智能体以其自主决策、多模态交互以及持续进化的能力,正逐渐成为推动各行业创新与发展的核心驱动力。一、智能体应用的层级革命传统脚本工具vs.自主决策智能体传统脚本工具在过去的自动化流程中扮演着重要角色,它基于预设的规则和流程运行,如同机械般执行任务。例如
- 基于深度学习的图像生成技术:GAN的进阶探索与应用实践
赵大仁
深度学习生成对抗网络人工智能
生成对抗网络(GAN)自2014年提出以来,已成为深度学习领域的研究热点。其强大的图像生成能力在众多领域展现出无限潜力。本文将深入探讨GAN的高级技术,分享实践经验,并分析当前GAN研究的最新进展。一、GAN的核心原理回顾生成对抗网络(GAN)由生成器(Generator)和判别器(Discriminator)组成,两者通过对抗性训练过程不断优化。生成器的目标是生成能够欺骗判别器的样本,而判别器的
- 3、 探索服务导向与云计算的前沿进展
夏曦安
探索服务导向与云计算的前沿进展云计算物联网云存储优化
探索服务导向与云计算的前沿进展1.引言随着信息技术的迅猛发展,云计算和面向服务的架构(SOA)已经成为现代信息系统的重要组成部分。云计算通过提供灵活、可扩展的计算资源,极大地改变了企业和组织的IT基础设施建设模式。而面向服务的架构则通过模块化和标准化的服务接口,促进了不同系统之间的互操作性。本文将深入探讨服务导向和云计算的最新进展,特别是2013年ESOCC研讨会的相关研究和技术成果。2.云计算与
- 南洋理工、新国立新作 MEMO:基于记忆引导的高保真数字人生成扩散模型
楠哥聊AI
计算机视觉数字人科研MEMOAIGCtalkingheadtalkingface
视频扩散模型的最新进展为现实音频驱动的视频生成开辟了新的潜力。然而,在生成的视频中实现无缝音频与唇部同步化、保持长期身份一致性以及产生自然、与音频对齐的表情仍然是一个重大的挑战。为了解决这些挑战,南洋理工、新加坡国立大学联合提出了MEMO:Memory-GuidedDiffusionforExpressiveTalkingVideoGeneration,这是一种端到端的音频驱动特性动画方法,用于生
- 15、 深入解析并行处理技术及其应用
AWS云计算
并行处理高性能计算大数据处理
深入解析并行处理技术及其应用1引言随着信息技术的发展,计算机系统已经进入了并行和分布式处理的新时代。并行处理技术不仅提高了计算效率,还使得复杂问题的求解变得更加可行。本文旨在探讨并行处理技术的核心概念、应用场景以及优化方法,帮助读者理解这一领域的最新进展和技术细节。2并行处理的基础概念并行处理是指通过同时执行多个任务来加速计算过程的技术。它可以通过硬件(如多核处理器)或软件(如多线程编程)实现。并
- 生成式 AI 技术革命:从 AIGC 到元宇宙的创新之路
XQR.小白
人工智能AIGC
目录摘要一、生成式AI技术基础二、AIGC内容创作技术进展三、生成式AI与元宇宙融合四、生成式AI产业应用案例五、生成式AI面临的挑战与解决方案六、生成式AI未来发展趋势七、结论参考文献附录:生成式AI工具与资源列表摘要本文深入探讨了生成式AI技术的最新进展及其在数字内容创作、元宇宙构建、人机交互等领域的创新应用。系统分析了文本生成、图像生成、视频生成、3D模型生成等核心技术的原理与发展趋势,结合
- 大型语言模型(LLM)评测研究最新进展
AI天才研究院
计算AI大模型企业级应用开发实战LLM大模型落地实战指南语言模型人工智能自然语言处理
大型语言模型(LLM)评测研究最新进展文章目录大型语言模型(LLM)评测研究最新进展摘要近期LLM评测相关顶会论文分析EMNLP2023重要论文其他最新论文主流LLM评测框架和基准通用评测框架综合评测平台中文评测基准LLM评测的新兴方向和方法论评测方式创新创新方法业界领先机构在LLM评测的最新进展LLM评测面临的挑战与未来趋势当前挑战未来趋势摘要本报告全面总结了2023年至今大语言模型(LLM)评
- 三甲医院“AI平台+专家系统”双轮驱动模式的最新编程方向分析
Allen_Lyb
医疗数智化教程人工智能健康医疗大数据云计算
医疗人工智能领域正在经历从“单点技术应用”到“系统性赋能”的深刻转型。在这一转型过程中,国内领先的三甲医院通过探索“AI平台+专家系统”双轮驱动模式,不仅解决了医疗AI落地“最后一公里”的难题,更推动了医疗服务质量与效率的全面提升。本文从技术架构、编程方向、落地应用及未来趋势等维度,全面分析这一创新模式的最新进展,为医疗AI领域的开发者、医院管理者和政策制定者提供参考。1双轮驱动模式的技术架构革新
- 【2025RAG最新进展】
weixin_37763484
大模型数据挖掘人工智能机器学习深度学习
2025年以来检索增强生成(RAG)的最新进展与前沿技术报告I.2025年检索增强生成(RAG)导论A.RAG的演进:超越基础检索检索增强生成(RetrievalAugmentedGeneration,RAG)已从一个相对简单的“检索-生成”范式,演变为一个包含众多专业技术的复杂生态系统。2025年的发展趋势表明,RAG的重点在于通过更高级的智能、适应性和上下文感知能力,来增强其流水线中的每一个组
- 云安全战略新纪元:颠覆性DDoS防御与零信任架构的创新实践
大富大贵7
程序员知识储备1程序员知识储备2程序员知识储备3android数据库react.js前端前端框架
下面呈现一篇虚拟的科技前沿文章,内容涵盖了云安全战略在DDoS攻击防御和零信任网络体系构建方面的最新进展。文章中不仅包含了深入的理论探讨,还附有多段代码示例,分别展示了“经典代码”、“前沿代码”以及“创新代码”的实现思路,同时引用了相关领域的重要文献。引言随着云计算和互联网技术的迅速发展,网络攻击手段也日益多样化,尤其是大规模DDoS(分布式拒绝服务)攻击给各类企业和组织带来了严峻的安全挑战。与此
- 4月报 | 将已派遣任务按工人组划分到不同等待队列提案落地
DolphinScheduler社区
海豚调度开源科技
各位热爱ApacheDolphinScheduler的小伙伴们,今年4月份社区月报来啦!社区月报每月更新一次,欢迎关注本栏目,即时跟进项目最新进展。本月看点:任务调度更智能,队列管理更高效!在本月更新中,最值得关注的是来自社区贡献者@det101的[DSIP-55]提案正式落地,实现了将已派遣任务按工人组划分到不同等待队列的功能。该优化意味着DolphinScheduler在多工人组部署场景下,将
- YOLOv11改进 | Neck篇 | 双向特征金字塔网络BiFPN助力YOLOv11有效涨点
wei子
YOLOv11YOLO人工智能
YOLOv11改进|Neck篇|双向特征金字塔网络BiFPN助力YOLOv11有效涨点引言目标检测领域的最新进展表明,特征金字塔网络(FPN)的设计对模型性能具有决定性影响。本文详细介绍如何将**双向特征金字塔网络(BiFPN)**集成到YOLOv11的Neck部分,通过改进的多尺度特征融合机制实现检测性能的显著提升。实验证明,该改进在COCO数据集上可实现2.3%~3.1%的mAP提升,同时保持
- Interleave-VLA:通过交错图像-文本指令增强机器人操控能力
三谷秋水
计算机视觉智能体大模型人工智能机器人计算机视觉深度学习机器学习
25年5月来自上海交大、UCBerkeley和UNCChapelHill的论文“Interleave-VLA:EnhancingRobotManipulationwithInterleavedImage-TextInstructions”。视觉-语言-动作(VLA)模型已展现出在物理世界中实现通用机器人操控的巨大潜力。然而,现有模型受限于机器人观测和纯文本指令,缺乏数字世界中基础模型最新进展所带来
- 深入解读Qwen3技术报告(五):后训练对齐
小爷毛毛(卓寿杰)
大模型AIGC深度学习基础/原理人工智能自然语言处理深度学习语言模型
重磅推荐专栏:《大模型AIGC》《课程大纲》《知识星球》本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和StableDiffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展5.后训练对齐:从基础模型到可用助手预训练完成后的大型语言模型虽
- 解码AI:2025年人工智能技术发展全景图
大数据张老师
人工智能cssjavascript
}解码AI:2025年人工智能技术发展全景图当前分析时间:2025年5月23日欢迎来到人工智能(AI)的又一个激动人心的变革之年!2024年的技术积累与突破,为2025年AI的全面爆发奠定了坚实基础。从提升生产力到重塑产业格局,从改变日常生活到探索智能的终极边界,AI正以前所未有的速度和深度影响着世界。本文将带您深入探索2025年AI技术的最新进展,特别聚焦通用人工智能(AGI)的瞩目突破与未来趋
- 复旦:评估LLM作为教师模型的能力
大模型任我行
大模型-模型评估人工智能自然语言处理语言模型论文笔记
标题:Teach2Eval:AnIndirectEvaluationMethodforLLMbyJudgingHowItTeaches来源:arXiv,2505.12259摘要大型语言模型(LLM)的最新进展已经超过了有效评估方法的发展。传统的基准测试依赖于特定任务的指标和静态数据集,这些指标和数据集往往存在公平性问题、可扩展性有限和污染风险。本文介绍了Teach2Eval,这是一个受费曼技术启发
- 量化用到的机器学习书籍推荐
输出输入
人工智能+量化EA机器学习
以下是一些适合不同层次读者的机器学习书籍推荐:零基础入门-《机器学习入门必备》:这本书没有复杂的公式推导,而是通过类比、案例和图片,通俗易懂地讲解了机器学习的基本概念、工具、数据处理、建模与优化等内容,非常适合没有任何基础的人工智能爱好者。-《MachineLearningforHumans》:以通俗易懂的方式系统全面地介绍机器学习相关知识,理论部分之后还有充足的实践材料和最新进展与应用,适合初学
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio