matlab练习程序(曲面拟合)

这里用到的还是最小二乘方法,和上一次这篇文章原理差不多。

就是首先构造最小二乘函数,然后对每一个系数计算偏导,构造矩阵乘法形式,最后解方程组。

比如有一个二次曲面:z=ax^2+by^2+cxy+dx+ey+f

首先构造最小二乘函数,然后计算系数偏导(我直接手写了):

matlab练习程序(曲面拟合)_第1张图片

解方程组(下图中A矩阵后面求和符号我就没写了啊),然后计算C:

matlab练习程序(曲面拟合)_第2张图片

代码如下:

clear all;
close all;
clc;

a=2;b=2;c=-3;d=1;e=2;f=30;   %系数         
n=1:0.2:20;
x=repmat(n,96,1);
y=repmat(n',1,96);
z=a*x.^2+b*y.^2+c*x.*y+d*x+e*y +f;      %原始模型     
surf(x,y,z)

N=100;
ind=int8(rand(N,2)*95+1);

X=x(sub2ind(size(x),ind(:,1),ind(:,2)));
Y=y(sub2ind(size(y),ind(:,1),ind(:,2)));
Z=z(sub2ind(size(z),ind(:,1),ind(:,2)))+rand(N,1)*20;       %生成待拟合点,加个噪声

hold on;
plot3(X,Y,Z,'o');

A=[N sum(Y) sum(X) sum(X.*Y) sum(Y.^2) sum(X.^2);
   sum(Y) sum(Y.^2) sum(X.*Y) sum(X.*Y.^2) sum(Y.^3) sum(X.^2.*Y);
   sum(X) sum(X.*Y) sum(X.^2) sum(X.^2.*Y) sum(X.*Y.^2) sum(X.^3);
   sum(X.*Y) sum(X.*Y.^2) sum(X.^2.*Y) sum(X.^2.*Y.^2) sum(X.*Y.^3) sum(X.^3.*Y);
   sum(Y.^2) sum(Y.^3) sum(X.*Y.^2) sum(X.*Y.^3) sum(Y.^4) sum(X.^2.*Y.^2);
   sum(X.^2) sum(X.^2.*Y) sum(X.^3) sum(X.^3.*Y) sum(X.^2.*Y.^2) sum(X.^4)];

B=[sum(Z) sum(Z.*Y) sum(Z.*X) sum(Z.*X.*Y) sum(Z.*Y.^2) sum(Z.*X.^2)]';

C=inv(A)*B;

z=C(6)*x.^2+C(5)*y.^2+C(4)*x.*y+C(3)*x+C(2)*y +C(1);           %拟合结果

mesh(x,y,z)

结果如下,深色曲面是原模型,浅色曲面是用噪声数据拟合的模型:

matlab练习程序(曲面拟合)_第3张图片

注:加权最小二乘可以参考我后来的这篇文章。

转载于:https://www.cnblogs.com/tiandsp/p/10297870.html

你可能感兴趣的:(matlab练习程序(曲面拟合))