- 如何快速写开题报告?
我是宝库
人工智能经验分享学习方法毕业论文开题报告毕业设计毕设
又到了毕业季,你是不是内心已经十分捉急?开题报告还没开始写?该怎么写?写好开题报告,就是论文成功的开始!开题报告越细致,论文的写作就越有方向和思路。每个学校都会出台关于开题报告的相关要求也会给到相关模板,同学们可以自己到学校的官网下载相关模板。一般而言,开题报告包括以下六个部分的内容:1.研究背景和意义2.文献综述3.研究提纲及预期贡献4.研究进度5.拟采用的研究方法、手段及采取的措施6.可能遇见
- MATLAB算法实战应用案例精讲-【深度学习】归一化
林聪木
matlab算法深度学习
目录为什么要做特征归一化/标准化?常用featurescaling方法计算方式上对比分析featurescaling需要还是不需要什么时候需要featurescaling?什么时候不需要FeatureScaling?归一化基础知识点1.什么是归一化2.为什么要归一化3.为什么归一化能提高求解最优解的速度4.归一化有哪些类型5.不同归一化的使用条件6.归一化和标准化的联系与区别层归一化综述提出背景概
- [论文解读] 多机器人系统动态任务分配综述
「已注销」
算法
https://www.emerald.com/insight/content/doi/10.1108/IR-04-2020-0073/full/html多机器人/多智能体动态环境任务分配决策动态任务调度策略该文章主要是想对目前stateoftheart多机器人动态任务调度策略做一个全面的评价,注意定语挺多的,里面的方法也较多为近几年的智能调度那些算法。衡量方法主要考虑到了应用场景、限制、目标方程
- 学习面向对象编程之前的准备工作(二)
笺上山河梦
C++学习c++算法开发语言
综述本次学习的所有知识点如下:/**C++struct使用*//**Filename:StructDemo.cpp*AuthorName:xxx*Date:2025.3.10*Email:xxxxxxxxxxxxxx*Function:DemonstrationtohowtousethestructureofC++.*/#include#includeusingnamespacestd;//结构体
- React Native 性能调试指南
一个前端人
react-nativereactnativereact.jsjavascript
写在前面在开发ReactNative应用时,性能优化是一个至关重要的环节。良好的性能不仅可以提升用户体验,还能减少应用的资源消耗,提高应用的稳定性。本文将详细介绍如何对ReactNative应用进行性能调试和优化,包括性能综述、编译速度优化、列表配置优化、JavaScript加载优化以及Profiling。一、性能综述在开始性能调试之前,了解一些基本概念和工具是非常重要的。以下是一些关键点:FPS
- Nature:OpenAI的deep research工具对科研人员有用吗?
迪娜学姐
人工智能论文阅读论文笔记prompt
OpenAI的deepresearch工具对科研人员有用吗?它有哪些优缺点?来看看全球学术界专家的评价。科技巨头OpenAI发布了一款名为“深度研究”的付费访问工具,该工具能够将来自数十乃至数百个网站的信息综合成一份数页长的引用报告。此工具与谷歌去年12月发布的同名“深度研究”功能类似,能在短短数十分钟内完成相当于数小时的工作量。许多科学家对其撰写文献综述或整篇综述论文的能力,甚至识别知识空白的能
- 基于大模型预测的巨细胞病毒视网膜炎诊疗全流程研究报告
LCG元
围术期危险因子预测模型研究人工智能
目录一、引言1.1研究背景与意义1.2研究目的1.3研究方法与创新点二、巨细胞病毒视网膜炎概述2.1疾病定义与特点2.2流行病学分析2.3现有治疗手段综述三、大模型技术原理与应用现状3.1大模型介绍3.2在医疗领域的应用案例3.3选择大模型预测巨细胞病毒视网膜炎的原因四、术前预测与评估4.1数据收集与整理4.2大模型预测模型的构建4.3预测内容与指标4.4案例分析:术前预测实例展示五、术中方案制定
- 【存储中间件】MongoDB最热门NoSql数据库(一):NoSQL、MongoDB介绍
道友老李
架构师进阶-存储中间件nosqlmongodb中间件
文章目录1.MongoDb综述1.1.什么是Nosql1.2.什么是MongoDb**1.2.1核心特性****1.2.2典型应用场景****1.2.3与关系型数据库对比****1.2.4局限性及使用建议**个人主页:道友老李欢迎加入社区:道友老李的学习社区1.MongoDb综述1.1.什么是NosqlNoSQL(NotOnlySQL)是一类非关系型数据库的统称,其核心特征在于突破传统关系型数据库
- 计算机视觉图像处理面试笔试题整理——边缘检测
fpga和matlab
图像处理计算机视觉图像面试笔试计算机视觉面试笔试
目录1.边缘检测综述2.Roberts算子3.Prewitt算子4.Sobel算子5.Laplace算子6.Canny1.边缘检测综述边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。图像边缘是图像最基本的特征,所谓**边缘**(Edge)是指图像局部特性的不连续性。灰度或结构等信息的突变处
- 高斯Splatting:3D 重建与新视图合成的综述
三谷秋水
人工智能机器学习计算机视觉计算机视觉人工智能深度学习
24年5月来自挪威大学的论文“GaussianSplatting:3DReconstructionandNovelViewSynthesis,aReview”。基于图像的3D重建是一项具有挑战性的任务,涉及从一组输入图像中推断出目标或场景的3D形状。基于学习的方法因其直接估计3D形状的能力而备受关注。这篇论文重点介绍3D重建的最新技术,包括生成新的、未见过的视图。高斯Splatting方法的最新发
- 中国团体保险行业发展规模及投资发展趋向研究报告2021-2027年
Le9420
电子商务
第1章:中国团体保险行业发展综述1.1团体保险行业定义及特点1.1.1团体保险行业的定义1.1.2团体保险行业产品/业务特点(1)团体保险与个人保险(2)团体保险与社会统筹保险1.2团体保险行业统计标准1.2.1团体保险行业统计口径1.2.2团体保险行业统计方法1.2.3团体保险行业数据种类1.2.4团体保险行业研究范围(1)团体人寿保险(2)团体健康保险(3)团体意外伤害保险第2章:美国团体健康
- 10.【线性代数】—— 四个基本子空间
sda42342342423
math线性代数基本子空间
十、四个基本子空间1.列空间C(A)C(A)C(A)inRmR^mRm2.零空间N(A)N(A)N(A)inRnR^nRn3.行空间C(AT)C(A^T)C(AT)inRnR^nRn4.左零空间N(AT)N(A^T)N(AT)inRmR^mRm综述5.新的向量空间讨论矩阵Am∗nA_{m*n}Am∗n的四个基本空间,m行n列1.列空间C(A)C(A)C(A)inRmR^mRm[col11col21
- 基于信息间隙决策理论的碳捕集电厂调度(Matlab代码实现)
砌墙_2301
matlab算法人工智能
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述基于信息间隙决策理论(IGDT)的碳捕集电厂调度研究综述一、信息间隙决策理论(IGDT)的定义与核心原理二、碳捕集电厂调度的主要研究方向与挑战三、IGDT在碳捕集电厂调度中的模型框架四、现有调度方法的局限性及IGDT的改进五、实证研究案例分析六、总结与
- 【资料分享】IF=500+!基于鼻咽癌诱导化疗后减容放疗与常规减容放疗比较的研究综述
灵犀拾荒者
资料分享数据挖掘
一、摘要在鼻咽癌(NasopharyngealCarcinoma,NPC)的综合治疗中,诱导化疗(InductionChemotherapy,IC)可显著缩小肿瘤体积,随后行放射治疗(Radiotherapy,RT)已成为临床常见策略。传统共识通常建议按诱导化疗前(Pre-IC)的肿瘤范围进行常规放疗;然而,减容放疗(Reduced-volumeRT)基于诱导化疗后(Post-IC)显著缩小的肿瘤
- DeepSeek大模型如何提升论文与代码效率
智能计算研究中心
其他
内容概要DeepSeek大模型作为人工智能领域的前沿成果,通过670亿参数的混合专家架构(Mixture-of-Experts,MoE),在多模态任务处理与专业场景应用中展现了显著优势。其核心技术突破体现在多语言处理能力、视觉语言理解模块以及深度优化的自然语言处理算法上,能够覆盖学术研究、代码开发、内容创作等多元场景。例如,在论文写作领域,模型通过智能选题推荐、文献综述生成及SEO关键词拓展功能,
- AbMole肿瘤研究综述(二):靶向抑制剂与人源单抗,开启肿瘤研究新篇章
AbMole
AbMole生物化学生物试剂科研生物实验
肿瘤的研究一直是生命科学和基础医学领域中的热门话题,随着分子生物学和肿瘤生物学等学科的发展,人们逐渐明确了一系列与肿瘤发生和转移等密切关系的基因、蛋白,包括多种受体酪氨酸激酶(RTKs,如EGFR、ALK、c-Met、TRK、BCR-ABL等)和非RTKs(如BCR-ABL、BTK、CDK等),以及一些重要的细胞信号通路,如RAS/RAF/MEK、PI3K/mTOR等。AbMole向大家介绍围绕上
- Efficient Large Language Models: A Survey
UnknownBody
SurveyPaper语言模型人工智能自然语言处理
本文是LLM系列文章,针对《EfficientLargeLanguageModels:ASurvey》的翻译。高效的大型语言模型综述摘要1引言2模型为中心的方法3数据为中心的方法4LLM框架5结论摘要大型语言模型(LLM)在自然语言理解、语言生成和复杂推理等重要任务中表现出了非凡的能力,并有可能对我们的社会产生重大影响。然而,这种能力伴随着它们所需的大量资源,突出表明迫切需要开发有效的技术来应对其
- 第一讲 信息化发展
Jerry.张蒙
数字化转型大数据云原生人工智能区块链信息与通信云计算自动化
本文是本人在学习信息系统项目管理期间,梳理的笔记,方便后续复习。1、综述项目内容项目内容信息与信息化信息数字中国数字经济信息系统数字政府信息化数字社会现代化基础设施新型基础设施建设数字生态工业互联网数字化转型与元宇宙数字化转型车联网元宇宙现代化创新发展农业农村现代化两化融合与智能制造消费互联网2、信息与信息化1)信息概念:是一种客观事物,能够用来消除不确定性。信息量单位:比特(bit)2)信息的1
- Transformer模型详解
Yuki-^_^
Transformer模型详解人工智能transformer深度学习人工智能
导读Transformer在许多的人工智能领域,如自然语言处理(NaturalLanguageProcessing,NLP)、计算机视觉(ComputerVision,CV)和语音处理(SpeechProcessing,SP)取得了巨大的成功。因此,自然而然的也吸引了许多工业界和学术界的研究人员的兴趣。到目前为止,已经提出了大量基于Transformer的相关工作和综述。本文基于邱锡鹏[1]老师近
- 机器学习与深度学习资料
JasonDing1354
【MachineLearning】
《BriefHistoryofMachineLearning》介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Adaboost到随机森林、DeepLearning.《DeepLearninginNeuralNetworks:AnOverview》介绍:这是瑞士人工智能实验室JurgenSchmidhuber写的最新版本《神经网络与深度学习综述》本综述的特点是以
- 通用无线设备对码软件_通用软件无线电平台USRP-LW N310
weixin_39793319
通用无线设备对码软件
USRP-LWN310http://www.luowave.com产品综述:USRP-LWN310是一种网络的软件定义无线电(SDR),它提供了部署大规模的可靠的和容错性的分布式无线系统。USRP-LWN310通过引入远程执行任务的能力简化了对SDR系统的控制和管理,如更新软件,重新启动,工厂复位、自检,主机/ARM调试以及监控系统运行。USRP-LWN310是目前SDR市场上通道数量最为密集的产
- python-个人笔记
尘叶风凌
个人笔记python
入门python运行Python简单教程Python综述python是什么Python是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。Python的设计具有很强的可读性,相比其他语言经常使用英文关键字,其他语言的一些标点符号,它具有比其他语言更有特色语法结构。Python是一种解释型语言:这意味着开发过程中没有了编译这个环节。类似于PHP和Perl语言。Python是交互式语
- 物联网串口综述
reset2021
物联网物联网
串口(SerialPort)是一种用于设备之间传输数据的接口,其特点是以一条信号线依次传输数据位,因此它是一种“serial”通信方式。以下是对串口的一些关键点进行总结:1.基本概念串口通信:是一种基于RS-232(或RS-485、RS-422等标准)的同步或异步通信接口,主要用于设备间的数据传输。串口接口:通常使用DB9或DB25连接器,常见于电脑、嵌入式系统、工业控制设备等。2.工作原理数据在
- 救命!论文被知网判定AI生成?别慌!手把手教你3分钟自救
chatpaper001
人工智能自然语言处理深度学习AIGCAI写作
最近知网搞了个大动作!2025年2月13日刚更新的学术检测系统,直接把论文圈炸了锅。新上线的AIGC检测2.13版本,连文献综述都可能被打上"AI生成"标签!这次更新有多狠?看这3点就知道1️⃣AI检测准到离谱现在连固定模板的内容都可能中标。比如摘要、引言这些套路化部分,一不小心就被系统盯上。2️⃣专业术语成雷区理论名词、机构名称用多了,系统直接亮红灯。上周有个同学写"Transformer模型"
- 【AI学习】2024年末一些AI总结的摘录
bylander
AI学习人工智能gpt学习
看到不少的总结,边摘录边思考。尤其是这句话:“人类真正的问题是:我们拥有旧石器时代的情感、中世纪的制度和神一般的技术”。22024生成模型综述来自@爱可可-爱生活2024年见证了AI领域的重大飞跃。从OpenAI的主导地位到Claude的异军突起,从xAI到中国的DeepSeek和Qwen,整个行业呈现出百花齐放的态势。让我们梳理2024年的关键进展,并展望2025年的研究方向。大语言模型:架构创
- 点云配准(点云拼接)论文综述
点云SLAM
点云数据处理技术点云数据处理点云配准DeepICPICP深度学习配准方法特征匹配
点云配准(点云拼接)论文综述1.引言点云配准(PointCloudRegistration)是三维计算机视觉与机器人感知领域的核心任务,其目标是通过几何变换将多个点云对齐至统一坐标系,形成完整的场景表示。该技术广泛应用于自动驾驶、增强现实、工业检测、医学影像等领域。随着传感器技术(如LiDAR、RGB-D相机)的进步与深度学习的发展,点云配准方法经历了从传统优化算法到数据驱动模型的演变。本文系统综
- 论文学习3:深度学习增强的光声成像(PAI)的最新进展(综述)
superace7911
基于机器学习的光声图像处理机器学习图像处理
原文链接有空可以细看,这里中列出了文中提到的部分研究结果写作大纲1.引言光声成像(PAI)的介绍,它结合了光学和超声成像的优点,为生物医学成像提供了一种有前景的模态。深度学习(DL)在解决PAI中存在的技术限制(如硬件限制、生物特征信息缺乏等)方面的潜力。2.DL方法的原理介绍DL的子集:监督学习、无监督学习和强化学习。详细说明代表性DL架构:卷积神经网络(CNN)、U-形神经网络(U-Net)和
- 对比学习小综述
wintercoming111
学习
对比学习的目标是将相似样本的表示(Representation)拉近,不相似样本的表示拉远。通过数据增强、损失函数、表示学习目标等步骤实现。分类(1)基于单视角的方法(InstanceDiscrimination)典型代表:SimCLR,MoCo特点:将每个样本视为一个独立类,无需额外的标注信息。适用场景:数据无标注或弱标注的场景。(2)基于聚类的方法(Clustering-BasedContra
- DeepSeek助力科研工作
CodeJourney.
数据库算法架构
在科研领域,传统工作模式面临诸多挑战。科研人员往往需要耗费大量时间和精力在文献综述、技术报告生成和数据分析等基础工作上。据统计,科研人员约三分之一的工作时间都花在查阅和梳理文献上,这不仅效率低下,还容易遗漏重要信息,尤其在信息爆炸的今天,海量的文献资料让科研人员不堪重负。而数据分析的复杂性也使得研究进展缓慢,难以快速从数据中挖掘出有价值的信息。但随着人工智能技术的发展,这些问题迎来了转机,Deep
- 如何避免论文查重中的误判
kexiaoya2013
论文笔记论文阅读
毕业季临近,论文查重成了大家关注的焦点。谁也不想因为查重误判而影响毕业,那么如何有效避免论文查重中的误判呢?理解查重原理:查重系统以连续13字符以上相似为判定标准。避免大段直接引用,对必须引用的内容用引号标注并注明出处,同时加入个人分析。高频术语可用同义词或代词替代。处理公式、表格和图片:直接复制可能导致重复率上升。用公式编辑器重写公式,调整表格结构或文字描述数据,复杂图表可转为图片。整合文献综述
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1