神经网络中Batch和Epoch之间的区别

来自蜂口知道公众号

随机梯度下降法是一种具有大量超参数的学习算法。通常会使初学者感到困惑的两个超参数: Batch大小和Epoch数量,它们都是整数值,看起来做的事情是一样的。在这篇文章中,您将发现随机梯度下降中Batch和Epoch之间的差异。

阅读这篇文章后,你会知道:

·   随机梯度下降是一种迭代学习算法,它使用训练数据集来更新模型。

·   批量大小是梯度下降的超参数,在模型的内部参数更新之前控制训练样本的数量。

·   Epoch是梯度下降的超参数,其控制通过训练数据集的完整传递的数量。

Batch:

Batch大小是一个超参数,用于定义在更新内部模型参数之前要处理的样本数。将批处理视为循环迭代一个或多个样本并进行预测。在批处理结束时,将预测与预期输出变量进行比较,并计算误差。从该错误中,更新算法用于改进模型,例如沿误差梯度向下移动。训练数据集可以分为一个或多个Batch。当所有训练样本用于创建一个Batch时,学习算法称为批量梯度下降。当批量是一个样本的大小时,学习算法称为随机梯度下降。当批量大小超过一个样本且小于训练数据集的大小时,学习算法称为小批量梯度下降。

·    批量梯度下降。批量大小=训练集的大小

·        随机梯度下降。批量大小= 1

·       小批量梯度下降。1 <批量大小<训练集的大小

在小批量梯度下降的情况下,流行的批量大小包括32,64和128个样本。您可能会在文献和教程中看到这些值在模型中使用。

如果数据集没有按批量大小均匀分配怎么办?

在训练模型时经常会发生这种情况。它只是意味着最终批次的样品数量少于其他批次。或者,您可以从数据集中删除一些样本或更改批处理大小,以便数据集中的样本数按批次大小均匀划分。

Epoch:

Epoch数是一个超参数,它定义了学习算法在整个训练数据集中的工作次数。一个Epoch意味着训练数据集中的每个样本都有机会更新内部模型参数。Epoch由一个或多个Batch组成。例如,如上所述,具有一批的Epoch称为批量梯度下降学习算法。您可以将for循环放在每个需要遍历训练数据集的epoch上,在这个for循环中是另一个嵌套的for循环,它遍历每批样本,其中一个批次具有指定的“批量大小”样本数。

 epochs 数量传统上很大,通常是数百或数千,允许学习算法运行直到模型的误差被充分地最小化了。您可能会看到文献和教程设置为10,100,500,1000和更大的时期数量的示例。通常创建线图,其显示沿x轴的时间以及模型在y轴上的误差或技能。这些图有时被称为学习曲线。这些图可以帮助诊断模型是否已经过度学习,学习不足或者是否适合训练数据集。

Batch和Epoch有什么区别?

Batch大小是在更新模型之前处理的多个样本。Epoch数是通过训练数据集的完整传递次数。批处理的大小必须大于或等于1且小于或等于训练数据集中的样本数。可以将epoch设置为1和无穷大之间的整数值。您可以根据需要运行算法,甚至可以使用除固定数量的epoch之外的其他条件来停止算法,例如模型错误随时间的变化(或缺少变化)。它们都是整数值,并且它们都是学习算法的超参数,例如学习过程的参数,而不是学习过程找到的内部模型参数。您必须为学习算法指定batch大小和epoch数。如何配置这些参数没有固定的规则。您必须尝试不同的值,看看哪种方法最适合您的问题。

实例

最后,让我们用一个小例子来说明这一点。

假设您有一个包含200个样本(数据行)的数据集,并且您选择的Batch大小为5和1,000个Epoch。

这意味着数据集将分为40个Batch,每个Batch有5个样本。每批五个样品后,模型权重将更新。

这也意味着一个epoch将涉及40个Batch或40个模型更新。

有1000个Epoch,模型将暴露或传递整个数据集1,000次。在整个培训过程中,总共有40,000Batch。

 

你可能感兴趣的:(深度学习)