python 爬虫 爬取网易严选全网商品价格评论数据

1.获取商品目录

python 爬虫 爬取网易严选全网商品价格评论数据_第1张图片

在Chrome浏览器开发者工具中,可以找到目录的JS地址:

http://you.163.com/xhr/globalinfo//queryTop.json

python 爬虫 爬取网易严选全网商品价格评论数据_第2张图片

 得到商品数据

    def get_categoryList():
        url='http://you.163.com/xhr/globalinfo//queryTop.json'
        headers={
            'Accept':'application/json, text/javascript, */*; q=0.01',
            'Accept-Encoding':'gzip, deflate',
            'Accept-Language':'zh-CN,zh;q=0.9',
            'Connection':'keep-alive',
            'Host':'you.163.com',
            'Referer':'http://you.163.com/?from=web_out_pz_baidu_1',
            'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.15 Safari/537.36',
            'X-Requested-With':'XMLHttpRequest',
            
        }
        req=requests.get(url=url,headers=headers,verify=False).json()
        df = pd.DataFrame(columns=('一级分类ID', '一级分类', '二级分类ID', '二级分类', '三级分类ID', '三级分类'))
        x = 0

        cateList=req['data']['cateList']  ##一级分类
        for i in cateList:
            id1 = i['id']
            name1 = i['name']
            subCateGroupList=i['subCateGroupList']  ##二级分类
            for j in subCateGroupList:
                id2 = j['id']
                name2 = j['name']
                categoryList=j['categoryList']  ##三级分类
                for k in categoryList:
                    id3=k['id']
                    name3=k['name']
                    df.loc[x] = [id1,name1,id2,name2,id3,name3]
                    x=x+1
        #df.to_csv('list.csv')
        return df

2.获取商品ID数据

在移动端的一级目录网址http://m.you.163.com/item/list?categoryId=1005000  的88行代码里可以找到整个目录下所有商品的数据;

 

python 爬虫 爬取网易严选全网商品价格评论数据_第3张图片

把88行的文本复制出来,去掉前面的var jsonData=,和后面的;符号,粘贴到json可视化工具里做分析(本人用的是hijson),可以找到'商品ID', '商品名称', '商品简介', '商品单位', '上架时间', '更新时间', '柜台价', '零售价', '商品URL', '商品图片'等数据

python 爬虫 爬取网易严选全网商品价格评论数据_第4张图片

##获取商品ID数据
    def get_items_ID():  ##移动端网站
        s = requests.session()
        df=get_categoryList()
        cateList=df['一级分类ID'].values.tolist()
        cateList = list(set(cateList))
        df_item=pd.DataFrame(columns=('三级分类ID', '商品ID', '商品名称', '商品简介', '商品图片', '商品单位', '上架时间',
                                      '更新时间', '柜台价', '零售价','商品URL'))
        x=0
        for i in cateList:  ##一级分类目录商品
            headers = {
                'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
                'Accept-Encoding': 'gzip, deflate',
                'Accept-Language': 'zh-CN,zh;q=0.9',
                'Connection': 'keep-alive',
                'Host': 'm.you.163.com',
                'Referer': 'http://m.you.163.com/item/list?categoryId='+str(i),
                'Upgrade-Insecure-Requests': '1',
                'User-Agent': 'Mozilla/5.0 (Linux; U; Android 8.0.0; zh-CN; MHA-AL00 Build/HUAWEIMHA-AL00) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/57.0.2987.108 UCBrowser/12.1.4.994 Mobile Safari/537.36',
            }
            s.headers.update(headers)
            time.sleep(1.024)  ##延时
            url='http://m.you.163.com/item/list?categoryId='+str(i)
            req=s.get(url=url,verify=False).text
            js=re.search('jsonData=(.*)',req).group(1).strip(';')
            js=json.loads(js)
            categoryItemList=js['categoryItemList']  ##商品清单列表
            for i in categoryItemList:
                category_id=i['category']['id']    ##商品三级分类ID
                itemList=i['itemList']   ###三级分类下商品
                for j in itemList:
                    id=j['id']      ##商品ID
                    name=j['name']  ## 商品名称
                    simpleDesc=j['simpleDesc']   ##商品简介
                    primaryPicUrl=j['primaryPicUrl']   ##商品图片
                    pieceUnitDesc=j['pieceUnitDesc']  ##商品单位
                    onSaleTime=timestamp_to_date(j['onSaleTime'])   ##上架时间
                    updateTime=timestamp_to_date(j['updateTime'])   ##更新时间
                    counterPrice=j['counterPrice']   ##柜台价
                    retailPrice=j['retailPrice']   ##零售价
                    itemUrl='http://you.163.com/item/detail?id='+str(id)  ##商品URL
                   
                    df_item.loc[x] = [category_id, id, name, simpleDesc, primaryPicUrl, pieceUnitDesc, onSaleTime,
                                      updateTime, counterPrice, retailPrice,itemUrl]
                    x=x+1
                    #print(category_id, id, name, simpleDesc, primaryPicUrl, pieceUnitDesc, onSaleTime, updateTime, counterPrice, retailPrice)

        df['三级分类ID'] = df['三级分类ID'].apply(str)  ##设置列格式
        #df_item.to_csv('df_item.csv', index=False, encoding="GB18030")
        df_item['三级分类ID'] = df_item['三级分类ID'].apply(str)  #设置列格式
        items=pd.merge(df_item,df,how='left',on=['三级分类ID'])
        ##调整列顺序
        items=items[['一级分类ID', '一级分类', '二级分类ID', '二级分类', '三级分类ID', '三级分类'
            , '商品ID', '商品名称', '商品简介', '商品单位', '上架时间', '更新时间', '柜台价', '零售价',
                     '商品URL','商品图片']]
        print(items)
        items.to_csv('items.csv',index=False, encoding="GB18030")
        return items

 3.获取单个商品ID评论数及评论观点数据

在电脑端的商品页面上,打开评论,就可以在NETWORK上刷出新的JS页面http://you.163.com/xhr/comment/tags.json?__timestamp=1543216560605&itemId=1615007,

python 爬虫 爬取网易严选全网商品价格评论数据_第5张图片

 

    def get_comment(self,id):   ##电脑端网站
        #time.sleep(1.22)
        now=str(int(time.time()*1000))
        url='http://you.163.com/xhr/comment/tags.json?__timestamp={}&itemId={}'.format(now,id)
        UserAgentlist = [
            'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:61.0) Gecko/20100101 Firefox/61.0',
            'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36 OPR/56.0.3051.104',
            'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 UBrowser/6.2.4094.1 Safari/537.36',
            'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.79 Safari/537.36 Maxthon/5.2.5.4000',
            'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36 QIHU 360SE',
            'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36 SE 2.X MetaSr 1.0',
            'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36',
            'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.84 Safari/537.36',

        ]
        ran = random.randint(0, len(UserAgentlist)-1)
        UserAgen = UserAgentlist[ran]
        headers={
            'Accept':'application/json, text/javascript, */*; q=0.01',
            'Accept-Encoding':'gzip, deflate',
            'Accept-Language':'zh-CN,zh;q=0.9',
            'Connection':'keep-alive',
            'Host':'you.163.com',
            'Referer':'http://you.163.com/item/detail?id={}&_stat_referer=index&_stat_area=mod_popularItem_item_1'.format(id),
            'User-Agent':UserAgen,
            'X-Requested-With':'XMLHttpRequest'
        }
        req = requests.get(url=url, headers=headers, verify=False).text
        js=json.loads(req)
        data=js['data']
        comment=''
        goodCmtRate='0'
        commentcount='0'
        if data!=[]:
            commentcount=data[0]['strCount']   ##评论数
            url='http://you.163.com/xhr/comment/itemGoodRates.json'
            postdata={'itemId': id}
            itemGoodRates=requests.post(url=url, headers=headers, data=postdata,verify=False).json()
            goodCmtRate=itemGoodRates['data']['goodCmtRate']   ##好评率
            for i in data:
                comment=str(comment)+str(i['name'])+'('+str(i['strCount'])+ ')'  ##评论观点
        commentdata=[commentcount,goodCmtRate,comment]
        print(commentdata)
        return commentdata

 4.获取单个商品ID的SKU数据

在移动端的商品主页面上http://m.you.163.com/item/detail?id=1516008  88行代码里可以找到SKU的数据

python 爬虫 爬取网易严选全网商品价格评论数据_第6张图片

    def get_items_data(id):  ##移动端网站
        url='http://m.you.163.com/item/detail?id='+str(id)
        UserAgentlist = [
            'Mozilla/5.0 (Linux; U; Android 8.1.0; zh-cn; BLA-AL00 Build/HUAWEIBLA-AL00) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/57.0.2987.132 MQQBrowser/8.9 Mobile Safari/537.36',
            'Mozilla/5.0 (Linux; U; Android 8.0.0; zh-CN; MHA-AL00 Build/HUAWEIMHA-AL00) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/57.0.2987.108 UCBrowser/12.1.4.994 Mobile Safari/537.36',
            'Mozilla/5.0 (Linux; Android 6.0.1; OPPO A57 Build/MMB29M; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/63.0.3239.83 Mobile Safari/537.36 T7/10.13 baiduboxapp/10.13.0.10 (Baidu; P1 6.0.1)',
            'Mozilla/5.0 (iPhone 6s; CPU iPhone OS 11_4_1 like Mac OS X) AppleWebKit/604.3.5 (KHTML, like Gecko) Version/11.0 MQQBrowser/8.3.0 Mobile/15B87 Safari/604.1 MttCustomUA/2 QBWebViewType/1 WKType/1',
            'Mozilla/5.0 (Linux; U; Android 8.1.0; zh-CN; BLA-AL00 Build/HUAWEIBLA-AL00) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/57.0.2987.108 UCBrowser/11.9.4.974 UWS/2.13.1.48 Mobile Safari/537.36 AliApp(DingTalk/4.5.11) com.alibaba.android.rimet/10487439 Channel/227200 language/zh-CN',
            'Mozilla/5.0 (Linux; U; Android 8.0.0; zh-CN; BAC-AL00 Build/HUAWEIBAC-AL00) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/57.0.2987.108 UCBrowser/11.9.4.974 UWS/2.13.1.48 Mobile Safari/537.36 AliApp(DingTalk/4.5.11) com.alibaba.android.rimet/10487439 Channel/227200 language/zh-CN',
            'Mozilla/5.0 (iPhone; CPU iPhone OS 10_2 like Mac OS X) AppleWebKit/602.3.12 (KHTML, like Gecko) Mobile/14C92 MicroMessenger/6.5.16 NetType/WIFI Language/zh_CN'
        ]
        ran = random.randint(0, len(UserAgentlist)-1)
        UserAgen = UserAgentlist[ran]
        headers={
            'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
            'Accept-Encoding':'gzip, deflate',
            'Accept-Language':'zh-CN,zh;q=0.9',
            'Connection':'keep-alive',
            'Host':'m.you.163.com',
            'Upgrade-Insecure-Requests':'1',
            'User-Agent':UserAgen,
        }
        req=requests.get(url=url,headers=headers,verify=False).text
        js=re.search('var jsonData=(.*)',req).group(1).strip(',')
        js=json.loads(js)
        skuList=js['skuList']   ###颜色分类列表
        df = pd.DataFrame(
            columns=('商品ID', '颜色分类', 'SKU柜台价', 'SKU零售价', 'SKU图片'))
        x = 0
        for i in skuList:
            itemSkuSpecValueList=i['itemSkuSpecValueList']
            try:
                pic=i['pic']
            except:
                pic=''
            try:
                counterPrice = i['counterPrice']
            except:
                counterPrice=''
            try:
                retailPrice=i['retailPrice']
            except:
                retailPrice=''
            skuvalue=''
            for j in itemSkuSpecValueList:
                try:
                    skuvalue=skuvalue+j['skuSpecValue']['value']+' '
                except:
                    skuvalue=''
            skuvalue=skuvalue.strip(' ')
            df.loc[x] = [id,skuvalue,counterPrice,retailPrice,pic]
            x=x+1
            print(id,skuvalue,counterPrice,retailPrice,pic)
        #print(df)
        #df.to_csv('get_items_data.csv',index=False, encoding="GB18030")
        return df

综合上述,将所有数据结合在一起,代码如下:

#!coding=utf-8
import requests
import re
import random
import time
import json
from requests.packages.urllib3.exceptions import InsecureRequestWarning
import pandas as pd
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)  ###禁止提醒SSL警告



###格式化时间戳
def timestamp_to_date(time_stamp, format_string="%Y-%m-%d %H:%M:%S"):
    time_array = time.localtime(int(time_stamp)/1000)
    str_date = time.strftime(format_string, time_array)
    return str_date


class wyyx(object):

    ###  获取分类
    def get_categoryList(self):
        url='http://you.163.com/xhr/globalinfo//queryTop.json'
        headers={
            'Accept':'application/json, text/javascript, */*; q=0.01',
            'Accept-Encoding':'gzip, deflate',
            'Accept-Language':'zh-CN,zh;q=0.9',
            'Connection':'keep-alive',
            'Host':'you.163.com',
            'Referer':'http://you.163.com/?from=web_out_pz_baidu_1',
            'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.15 Safari/537.36',
            'X-Requested-With':'XMLHttpRequest',
            
        }
        req=requests.get(url=url,headers=headers,verify=False).json()
        df = pd.DataFrame(columns=('一级分类ID', '一级分类', '二级分类ID', '二级分类', '三级分类ID', '三级分类'))
        x = 0

        cateList=req['data']['cateList']  ##一级分类
        for i in cateList:
            id1 = i['id']
            name1 = i['name']
            subCateGroupList=i['subCateGroupList']  ##二级分类
            for j in subCateGroupList:
                id2 = j['id']
                name2 = j['name']
                categoryList=j['categoryList']  ##三级分类
                for k in categoryList:
                    id3=k['id']
                    name3=k['name']
                    df.loc[x] = [id1,name1,id2,name2,id3,name3]
                    x=x+1
        #df.to_csv('list.csv')
        return df

    ##获取商品ID数据
    def get_items_ID(self):  ##移动端网站
        s = requests.session()
        df=self.get_categoryList()
        cateList=df['一级分类ID'].values.tolist()
        cateList = list(set(cateList))
        df_item=pd.DataFrame(columns=('三级分类ID', '商品ID', '商品名称', '商品简介', '商品图片', '商品单位', '上架时间',
                                      '更新时间', '柜台价', '零售价','商品URL','评论数','好评率','评论观点'))
        x=0
        for i in cateList:  ##一级分类目录商品
            headers = {
                'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
                'Accept-Encoding': 'gzip, deflate',
                'Accept-Language': 'zh-CN,zh;q=0.9',
                'Connection': 'keep-alive',
                'Host': 'm.you.163.com',
                'Referer': 'http://m.you.163.com/item/list?categoryId='+str(i),
                'Upgrade-Insecure-Requests': '1',
                'User-Agent': 'Mozilla/5.0 (Linux; U; Android 8.0.0; zh-CN; MHA-AL00 Build/HUAWEIMHA-AL00) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/57.0.2987.108 UCBrowser/12.1.4.994 Mobile Safari/537.36',
            }
            s.headers.update(headers)
            time.sleep(1.024)  ##延时
            url='http://m.you.163.com/item/list?categoryId='+str(i)
            req=s.get(url=url,verify=False).text
            js=re.search('jsonData=(.*)',req).group(1).strip(';')
            js=json.loads(js)
            categoryItemList=js['categoryItemList']  ##商品清单列表
            for i in categoryItemList:
                category_id=i['category']['id']    ##商品三级分类ID
                itemList=i['itemList']   ###三级分类下商品
                for j in itemList:
                    id=j['id']      ##商品ID
                    name=j['name']  ## 商品名称
                    simpleDesc=j['simpleDesc']   ##商品简介
                    primaryPicUrl=j['primaryPicUrl']   ##商品图片
                    pieceUnitDesc=j['pieceUnitDesc']  ##商品单位
                    onSaleTime=timestamp_to_date(j['onSaleTime'])   ##上架时间
                    updateTime=timestamp_to_date(j['updateTime'])   ##更新时间
                    counterPrice=j['counterPrice']   ##柜台价
                    retailPrice=j['retailPrice']   ##零售价
                    itemUrl='http://you.163.com/item/detail?id='+str(id)  ##商品URL
                    commentdata=self.get_comment(str(id))
                    commentcount=commentdata[0]     ##评论数
                    goodCmtRate=commentdata[1]   ##好评率
                    comment=commentdata[2]   ##评论观点
                    df_item.loc[x] = [category_id, id, name, simpleDesc, primaryPicUrl, pieceUnitDesc, onSaleTime,
                                      updateTime, counterPrice, retailPrice,itemUrl,commentcount,goodCmtRate,comment]
                    x=x+1
                    #print(category_id, id, name, simpleDesc, primaryPicUrl, pieceUnitDesc, onSaleTime, updateTime, counterPrice, retailPrice)

        df['三级分类ID'] = df['三级分类ID'].apply(str)  ##设置列格式
        #df_item.to_csv('df_item.csv', index=False, encoding="GB18030")
        df_item['三级分类ID'] = df_item['三级分类ID'].apply(str)  #设置列格式
        items=pd.merge(df_item,df,how='left',on=['三级分类ID'])
        ##调整列顺序
        items=items[['一级分类ID', '一级分类', '二级分类ID', '二级分类', '三级分类ID', '三级分类'
            , '商品ID', '商品名称', '商品简介', '商品单位', '上架时间', '更新时间', '柜台价', '零售价',
                     '商品URL','商品图片','评论数','好评率','评论观点']]
        print(items)
        items.to_csv('items.csv',index=False, encoding="GB18030")
        return items

    ###获取所有数据(商品ID+SKU数据)
    def all_data(self,path=''):   ##path默认空值,直接调用self.get_items_ID()获取数据,否则读取path文件的数据
        if path=='':
            iddata=self.get_items_ID()
        else:
            iddata=pd.read_csv(path, encoding="GB18030")
        idlist=iddata['商品ID'].values.tolist()
        skudata = pd.DataFrame( columns=('商品ID', '颜色分类', 'SKU柜台价', 'SKU零售价', 'SKU图片'))
        for id in idlist:
            df=self.get_items_data(id)
            skudata=skudata.append(df)
        print(skudata)

        skudata['商品ID'] = skudata['商品ID'].apply(str)  ##设置列格式
        iddata['商品ID'] = iddata['商品ID'].apply(str)  # 设置列格式
        alldata = pd.merge(skudata, iddata, how='left', on=['商品ID'])
        ##调整列顺序
        alldata = alldata[['一级分类ID', '一级分类', '二级分类ID', '二级分类', '三级分类ID', '三级分类'
            , '商品ID', '商品名称', '商品简介', '商品单位', '上架时间', '更新时间', '柜台价', '零售价',
                       '商品URL', '商品图片', '评论数', '好评率', '评论观点', '颜色分类', 'SKU柜台价', 'SKU零售价', 'SKU图片']]
        print(alldata)
        alldata.to_csv('alldata.csv', index=False, encoding="GB18030")

    ##获取单个商品ID的SKU数据
    def get_items_data(self,id):  ##移动端网站
        url='http://m.you.163.com/item/detail?id='+str(id)
        UserAgentlist = [
            'Mozilla/5.0 (Linux; U; Android 8.1.0; zh-cn; BLA-AL00 Build/HUAWEIBLA-AL00) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/57.0.2987.132 MQQBrowser/8.9 Mobile Safari/537.36',
            'Mozilla/5.0 (Linux; U; Android 8.0.0; zh-CN; MHA-AL00 Build/HUAWEIMHA-AL00) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/57.0.2987.108 UCBrowser/12.1.4.994 Mobile Safari/537.36',
            'Mozilla/5.0 (Linux; Android 6.0.1; OPPO A57 Build/MMB29M; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/63.0.3239.83 Mobile Safari/537.36 T7/10.13 baiduboxapp/10.13.0.10 (Baidu; P1 6.0.1)',
            'Mozilla/5.0 (iPhone 6s; CPU iPhone OS 11_4_1 like Mac OS X) AppleWebKit/604.3.5 (KHTML, like Gecko) Version/11.0 MQQBrowser/8.3.0 Mobile/15B87 Safari/604.1 MttCustomUA/2 QBWebViewType/1 WKType/1',
            'Mozilla/5.0 (Linux; U; Android 8.1.0; zh-CN; BLA-AL00 Build/HUAWEIBLA-AL00) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/57.0.2987.108 UCBrowser/11.9.4.974 UWS/2.13.1.48 Mobile Safari/537.36 AliApp(DingTalk/4.5.11) com.alibaba.android.rimet/10487439 Channel/227200 language/zh-CN',
            'Mozilla/5.0 (Linux; U; Android 8.0.0; zh-CN; BAC-AL00 Build/HUAWEIBAC-AL00) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/57.0.2987.108 UCBrowser/11.9.4.974 UWS/2.13.1.48 Mobile Safari/537.36 AliApp(DingTalk/4.5.11) com.alibaba.android.rimet/10487439 Channel/227200 language/zh-CN',
            'Mozilla/5.0 (iPhone; CPU iPhone OS 10_2 like Mac OS X) AppleWebKit/602.3.12 (KHTML, like Gecko) Mobile/14C92 MicroMessenger/6.5.16 NetType/WIFI Language/zh_CN'
        ]
        ran = random.randint(0, len(UserAgentlist)-1)
        UserAgen = UserAgentlist[ran]
        headers={
            'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8',
            'Accept-Encoding':'gzip, deflate',
            'Accept-Language':'zh-CN,zh;q=0.9',
            'Connection':'keep-alive',
            'Host':'m.you.163.com',
            'Upgrade-Insecure-Requests':'1',
            'User-Agent':UserAgen,
        }
        req=requests.get(url=url,headers=headers,verify=False).text
        js=re.search('var jsonData=(.*)',req).group(1).strip(',')
        js=json.loads(js)
        skuList=js['skuList']   ###颜色分类列表
        df = pd.DataFrame(
            columns=('商品ID', '颜色分类', 'SKU柜台价', 'SKU零售价', 'SKU图片'))
        x = 0
        for i in skuList:
            itemSkuSpecValueList=i['itemSkuSpecValueList']
            try:
                pic=i['pic']
            except:
                pic=''
            try:
                counterPrice = i['counterPrice']
            except:
                counterPrice=''
            try:
                retailPrice=i['retailPrice']
            except:
                retailPrice=''
            skuvalue=''
            for j in itemSkuSpecValueList:
                try:
                    skuvalue=skuvalue+j['skuSpecValue']['value']+' '
                except:
                    skuvalue=''
            skuvalue=skuvalue.strip(' ')
            df.loc[x] = [id,skuvalue,counterPrice,retailPrice,pic]
            x=x+1
            print(id,skuvalue,counterPrice,retailPrice,pic)
        #print(df)
        #df.to_csv('get_items_data.csv',index=False, encoding="GB18030")
        return df

    ##获取单个商品ID评论数及评论观点数据
    def get_comment(self,id):   ##电脑端网站
        #time.sleep(1.22)
        now=str(int(time.time()*1000))
        url='http://you.163.com/xhr/comment/tags.json?__timestamp={}&itemId={}'.format(now,id)
        UserAgentlist = [
            'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:61.0) Gecko/20100101 Firefox/61.0',
            'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36 OPR/56.0.3051.104',
            'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 UBrowser/6.2.4094.1 Safari/537.36',
            'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.79 Safari/537.36 Maxthon/5.2.5.4000',
            'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36 QIHU 360SE',
            'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36 SE 2.X MetaSr 1.0',
            'Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36',
            'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.84 Safari/537.36',

        ]
        ran = random.randint(0, len(UserAgentlist)-1)
        UserAgen = UserAgentlist[ran]
        headers={
            'Accept':'application/json, text/javascript, */*; q=0.01',
            'Accept-Encoding':'gzip, deflate',
            'Accept-Language':'zh-CN,zh;q=0.9',
            'Connection':'keep-alive',
            'Host':'you.163.com',
            'Referer':'http://you.163.com/item/detail?id={}&_stat_referer=index&_stat_area=mod_popularItem_item_1'.format(id),
            'User-Agent':UserAgen,
            'X-Requested-With':'XMLHttpRequest'
        }
        req = requests.get(url=url, headers=headers, verify=False).text
        js=json.loads(req)
        data=js['data']
        comment=''
        goodCmtRate='0'
        commentcount='0'
        if data!=[]:
            commentcount=data[0]['strCount']   ##评论数
            url='http://you.163.com/xhr/comment/itemGoodRates.json'
            postdata={'itemId': id}
            itemGoodRates=requests.post(url=url, headers=headers, data=postdata,verify=False).json()
            goodCmtRate=itemGoodRates['data']['goodCmtRate']   ##好评率
            for i in data:
                comment=str(comment)+str(i['name'])+'('+str(i['strCount'])+ ')'  ##评论观点
        commentdata=[commentcount,goodCmtRate,comment]
        print(commentdata)
        return commentdata


if __name__ == '__main__':
    wy=wyyx()
    wy.all_data()  ##

得到数据的样本如下:

python 爬虫 爬取网易严选全网商品价格评论数据_第7张图片

(PS:由于电脑端和手机端的爬取数据难度及数据清洗不一样,所以使用了两种方式结合。)

你可能感兴趣的:(python,爬虫)