【论文整理】100 篇自然语言处理必读论文!涵盖主流研究方向!

100 篇自然语言处理必读论文

聚类&词向量

  • Peter F Brown, et al.: Class-Based n-gram Models of Natural Language, 1992.

  • Tomas Mikolov, et al.: Efficient Estimation of Word Representations in Vector Space, 2013.

  • Tomas Mikolov, et al.: Distributed Representations of Words and Phrases and their Compositionality, NIPS 2013.

  • Quoc V. Le and Tomas Mikolov: Distributed Representations of Sentences and Documents, 2014.

  • Jeffrey Pennington, et al.: GloVe: Global Vectors for Word Representation, 2014.

  • Ryan Kiros, et al.: Skip-Thought Vectors, 2015.

  • Piotr Bojanowski, et al.: Enriching Word Vectors with Subword Information, 2017.

主题模型

  • Thomas Hofmann: Probabilistic Latent Semantic Indexing, SIGIR 1999.

  • David Blei, Andrew Y. Ng, and Michael I. Jordan: Latent Dirichlet Allocation, J. Machine Learning Research, 2003.

语言模型

  • Joshua Goodman: A bit of progress in language modeling, MSR Technical Report, 2001.

  • Stanley F. Chen and Joshua Goodman: An Empirical Study of Smoothing Techniques for Language Modeling, ACL 2006.

  • Yee Whye Teh: A Hierarchical Bayesian Language Model based on Pitman-Yor Processes, COLING/ACL 2006.

  • Yee Whye Teh: A Bayesian interpretation of Interpolated Kneser-Ney, 2006.

  • Yoshua Bengio, et al.: A Neural Probabilistic Language Model, J. of Machine Learning Research, 2003.

  • Andrej Karpathy: The Unreasonable Effectiveness of Recurrent Neural Networks, 2015.

  • Yoon Kim, et al.: Character-Aware Neural Language Models, 2015.

分割、标注、解析

  • Donald Hindle and Mats Rooth. Structural Ambiguity and Lexical Relations, Computational Linguistics, 1993.

  • Adwait Ratnaparkhi: A Maximum Entropy Model for Part-Of-Speech Tagging, EMNLP 1996.

  • Eugene Charniak: A Maximum-Entropy-Inspired Parser, NAACL 2000.

  • Michael Collins: Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms, EMNLP 2002.

  • Dan Klein and Christopher Manning: Accurate Unlexicalized Parsing, ACL 2003.

  • Dan Klein and Christopher Manning: Corpus-Based Induction of Syntactic Structure: Models of Dependency and Constituency, ACL 2004.

  • Joakim Nivre and Mario Scholz: Deterministic Dependency Parsing of English Text, COLING 2004.

  • Ryan McDonald et al.: Non-Projective Dependency Parsing using Spanning-Tree Algorithms, EMNLP 2005.

  • Daniel Andor et al.: Globally Normalized Transition-Based Neural Networks, 2016.

  • Oriol Vinyals, et al.: Grammar as a Foreign Language, 2015.

序列模型、信息抽取

  • Marti A. Hearst: Automatic Acquisition of Hyponyms from Large Text Corpora, COLING 1992.

  • Collins and Singer: Unsupervised Models for Named Entity Classification, EMNLP 1999.

  • Patrick Pantel and Dekang Lin, Discovering Word Senses from Text, SIGKDD, 2002.

  • Mike Mintz et al.: Distant supervision for relation extraction without labeled data, ACL 2009.

  • Zhiheng Huang et al.: Bidirectional LSTM-CRF Models for Sequence Tagging, 2015.

  • Xuezhe Ma and Eduard Hovy: End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF, ACL 2016.

机器翻译, seq2seq模型

  • Peter F. Brown et al.: A Statistical Approach to Machine Translation, Computational Linguistics, 1990.

  • Kevin Knight, Graehl Jonathan. Machine Transliteration. Computational Linguistics, 1992.

  • Dekai Wu: Inversion Transduction Grammars and the Bilingual Parsing of Parallel Corpora, Computational Linguistics, 1997.

  • Kevin Knight: A Statistical MT Tutorial Workbook, 1999.

  • Kishore Papineni, et al.: BLEU: a Method for Automatic Evaluation of Machine Translation, ACL 2002.

  • Philipp Koehn, Franz J Och, and Daniel Marcu: Statistical Phrase-Based Translation, NAACL 2003.

  • Philip Resnik and Noah A. Smith: The Web as a Parallel Corpus, Computational Linguistics, 2003.

  • Franz J Och and Hermann Ney: The Alignment-Template Approach to Statistical Machine Translation, Computational Linguistics, 2004.

  • David Chiang. A Hierarchical Phrase-Based Model for Statistical Machine Translation, ACL 2005.

  • Ilya Sutskever, Oriol Vinyals, and Quoc V. Le: Sequence to Sequence Learning with Neural Networks, NIPS 2014.

  • Oriol Vinyals, Quoc Le: A Neural Conversation Model, 2015.

  • Dzmitry Bahdanau, et al.: Neural Machine Translation by Jointly Learning to Align and Translate, 2014.

  • Minh-Thang Luong, et al.: Effective Approaches to Attention-based Neural Machine Translation, 2015.

  • Rico Sennrich et al.: Neural Machine Translation of Rare Words with Subword Units. ACL 2016.

  • Yonghui Wu, et al.: Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, 2016.

  • Jonas Gehring, et al.: Convolutional Sequence to Sequence Learning, 2017.

  • Ashish Vaswani, et al.: Attention Is All You Need, 2017.

指代消歧

  • Vincent Ng: Supervised Noun Phrase Coreference Research: The First Fifteen Years, ACL 2010.

  • Kenton Lee at al.: End-to-end Neural Coreference Resolution, EMNLP 2017.

自动文本总结

  • Kevin Knight and Daniel Marcu: Summarization beyond sentence extraction. Artificial Intelligence 139, 2002.

  • James Clarke and Mirella Lapata: Modeling Compression with Discourse Constraints. EMNLP-CONLL 2007.

  • Ryan McDonald: A Study of Global Inference Algorithms in Multi-Document Summarization, ECIR 2007.

  • Wen-tau Yih et al.: Multi-Document Summarization by Maximizing Informative Content-Words. IJCAI 2007.

  • Alexander M Rush, et al.: A Neural Attention Model for Sentence Summarization. EMNLP 2015.

问答系统、阅读理解

  • Pranav Rajpurkar et al.: SQuAD: 100,000+ Questions for Machine Comprehension of Text. EMNLP 2015.

  • Minjoon Soo et al.: Bi-Directional Attention Flow for Machine Comprehension. ICLR 2015.

生成模型、强化学习

  • Jiwei Li, et al.: Deep Reinforcement Learning for Dialogue Generation, EMNLP 2016.

  • Marc’Aurelio Ranzato et al.: Sequence Level Training with Recurrent Neural Networks. ICLR 2016.

  • Lantao Yu, et al.: SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient, AAAI 2017.

机器学习

  • Avrim Blum and Tom Mitchell: Combining Labeled and Unlabeled Data with Co-Training, 1998.

  • John Lafferty, Andrew McCallum, Fernando C.N. Pereira: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data, ICML 2001.

  • Charles Sutton, Andrew McCallum. An Introduction to Conditional Random Fields for Relational Learning.

  • Kamal Nigam, et al.: Text Classification from Labeled and Unlabeled Documents using EM. Machine Learning, 1999.

  • Kevin Knight: Bayesian Inference with Tears, 2009.

  • Marco Tulio Ribeiro et al.: “Why Should I Trust You?”: Explaining the Predictions of Any Classifier, KDD 2016.

神经网络模型

  • Richard Socher, et al.: Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection, NIPS 2011.

  • Ronan Collobert et al.: Natural Language Processing (almost) from Scratch, J. of Machine Learning Research, 2011.

  • Richard Socher, et al.: Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, EMNLP 2013.

  • Xiang Zhang, Junbo Zhao, and Yann LeCun: Character-level Convolutional Networks for Text Classification, NIPS 2015.

  • Yoon Kim: Convolutional Neural Networks for Sentence Classification, 2014.

  • Christopher Olah: Understanding LSTM Networks, 2015.

  • Matthew E. Peters, et al.: Deep contextualized word representations, 2018.

  • Jacob Devlin, et al.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2018.

你可能感兴趣的:(深度学习,神经网络,自然语言处理)