[深度学习]CNN训练MNIST数据集及tensorboard详解

MNIST数据集:

MNIST数据集包含6万训练图片和1万张测试图片.
[深度学习]CNN训练MNIST数据集及tensorboard详解_第1张图片
[深度学习]CNN训练MNIST数据集及tensorboard详解_第2张图片


TensorFlow:

[深度学习]CNN训练MNIST数据集及tensorboard详解_第3张图片


简单CNN训练MNIST:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

batch_size = 100
n_batch = mnist.train.num_examples // batch_size

#参数概要
def variable_summaries(var):
    with tf.name_scope('summaries'):
        mean = tf.reduce_mean(var) #平均值
        tf.summary.scalar('mean', mean)
        with tf.name_scope('stddev'):
            stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
        tf.summary.scalar('stddev', stddev) #标准差
        tf.summary.scalar('max', tf.reduce_max(var)) #最大值
        tf.summary.scalar('min', tf.reduce_min(var)) #最小值
        tf.summary.histogram('histogram', var) #直方图
           
#初始化权重
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

#初始化偏置
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

#卷积层
def conv2d(x, w):
    return tf.nn.conv2d(x, w,strides=[1,1,1,1], padding='SAME')

#池化层
def max_pool_2x2(x):
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')



with tf.name_scope('input'):
    x = tf.placeholder(tf.float32, [None, 784], name='x-input')
    y = tf.placeholder(tf.float32, [None, 10], name='y-input')
    with tf.name_scope('x_image'):
        x_image = tf.reshape(x, [-1,28,28,1])
    
with tf.name_scope('conv1'):
    with tf.name_scope('w_conv1'):
        w_conv1 = weight_variable([5,5,1,32])
        variable_summaries(w_conv1)
    with tf.name_scope('b_conv1'):
        b_conv1 = bias_variable([32])
        variable_summaries(b_conv1)
    with tf.name_scope('h_conv1'):
        h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)
    with tf.name_scope('h_pool1'):
        h_pool1 = max_pool_2x2(h_conv1)
        
with tf.name_scope('conv2'):
    with tf.name_scope('w_conv2'):
        w_conv2 = weight_variable([5,5,32,64])
        variable_summaries(w_conv2)
    with tf.name_scope('b_conv2'):
        b_conv2 = bias_variable([64])
        variable_summaries(b_conv2)
    with tf.name_scope('h_conv2'):
        h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
    with tf.name_scope('h_pool2'):
        h_pool2 = max_pool_2x2(h_conv2)

        
with tf.name_scope('fc1'):
    with tf.name_scope('w_fc1'):
        #初始化起一个全连接层的权值
        w_fc1 = weight_variable([7*7*64, 1024])
        variable_summaries(w_fc1)
    with tf.name_scope('b_fc1'):
        b_fc1 = bias_variable([1024])
        variable_summaries(b_fc1)
    with tf.name_scope('h_pool2_flat'):
        #把池化层2的结果扁平化为1维
        h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64], name='h_pool2_flat')
    with tf.name_scope('h_fc1'):
        #求第一个全连接层的输出(就是矩阵相乘,和卷积不一样)
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
        
    with tf.name_scope('keep_prob'):
        #dropout
        keep_prob = tf.placeholder(tf.float32, name='keep_prob')
    with tf.name_scope('h_fc1_drop'):
        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob, name='h_fc1_drop')
        
        
with tf.name_scope('fc2'):
    with tf.name_scope('w_fc2'):
        #初始化第二个全连接层的权重偏置
        w_fc2 = weight_variable([1024, 10])
        variable_summaries(w_fc2)
    with tf.name_scope('b_fc2'):
        b_fc2 = bias_variable([10])
        variable_summaries(b_fc2)
    with tf.name_scope('softmax'):   
        prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2) + b_fc2, name='prediction')

with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
    tf.summary.scalar('loss', loss)
    
with tf.name_scope('train'):
    trian_step = tf.train.AdamOptimizer(0.0001).minimize(loss)
    
init = tf.global_variables_initializer()

with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1))
    with tf.name_scope('accuracy'):
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, dtype=tf.float32))
        tf.summary.scalar('accuracy', accuracy)
        
#合并所有的summary
merged = tf.summary.merge_all()


with tf.Session() as sess:
    sess.run(init)
    
    #保存图
    train_writer = tf.summary.FileWriter('logging/train', sess.graph)
    test_writer =tf.summary.FileWriter('logging/test', sess.graph)
    for epoch in range(1001):
        #for batch in range(n_batch):
        #训练模型
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        sess.run(trian_step,feed_dict={x:batch_xs, y:batch_ys, keep_prob:0.7})

        #记录训练集训练的参数
        summary= sess.run(merged, feed_dict={x:batch_xs, y:batch_ys, keep_prob:1.0})
        #把所有的参数和训练周期加到write里面去
        train_writer.add_summary(summary, epoch)

        #记录测试集训练的参数
        batch_xs, batch_ys = mnist.test.next_batch(batch_size)
        summary = sess.run(merged, feed_dict={x:batch_xs, y:batch_ys, keep_prob:1.0})
        test_writer.add_summary(summary, epoch)

        if epoch % 100 == 0:
            test_acc = sess.run(accuracy, feed_dict={x:mnist.test.images, y:mnist.test.labels, keep_prob:1.0})
            train_acc = sess.run(accuracy, feed_dict={x:mnist.train.images[:10000], y:mnist.train.labels[:10000], keep_prob:1.0})
            print('Iter' + str(epoch) + ',Test Accuracy=' + str(test_acc) + ',Train Accuracy=' + str(train_acc))
        

[深度学习]CNN训练MNIST数据集及tensorboard详解_第4张图片


在终端输入指令后复制链接到浏览器查看tensorboard:
在这里插入图片描述
可以看到整个的graph:
[深度学习]CNN训练MNIST数据集及tensorboard详解_第5张图片
以及各项参数变化:
[深度学习]CNN训练MNIST数据集及tensorboard详解_第6张图片
可以看到test和train的准确率十分的接近都在96%徘徊,没有过拟合的嫌疑.

conv1层时候w和b的变化:
[深度学习]CNN训练MNIST数据集及tensorboard详解_第7张图片

loss也基本稳定:
[深度学习]CNN训练MNIST数据集及tensorboard详解_第8张图片

你可能感兴趣的:(深度学习)