Python实现同义词替换(哈工大pyltp分词)

问答系统慢慢的成为非常流行且非常实用的应用,成为越来越多的研究者的研究方向。当前问答系统有基于知识库的问答系统,对话系统以及聊天机器人。

在问答系统中,当用户想要利用问答系统搜索到与自己提出 query相同或相似的问题及其答案时,由于用户输入 query都是自己描述的,比较口语化,且有错别字,歧义等,其结构复杂和句式冗长,使得从问句中提取重要关键词项会比较困难(提出的关键词质量不高,词不达意的现象)。因无法准确获取问句中的核心关键词,导致搜索的结果不够准确,故需要对其输入的 query中的关键词进行同义词扩展。

当用户在使用问答系统搜索时,为了能够将与用户所输入 query 的关键词进行同义词相匹配,使其能够得到较好的搜索结果,采用基于同义词的搜索请求 (query) 扩展,即在利用 query 进行搜索的同时也利用 query 的同义词进行搜索,提高搜索结果召回的质量。

以上说明同义词替换在检索系统中的基础性和必要性。

最近有接触到基于知识库的问答系统的项目,需要对关键词进行同义词扩展,提高搜索效率。

同义词的扩展,这里不详述展开。

程序中设计到分词技术和同义词表,分词采用了哈工大的pyltp,其官方文档链接为http://pyltp.readthedocs.io/zh_CN/latest/。同义词表是利用哈工大的同义词词林(扩展版)进行预处理保留每个词的前两项得来的,原版下载链接为https://www.ltp-cloud.com/download/(但好像网页不存在了)。

同义词替换代码如下:

这里用的是哈工大的pyltp分词包,加载了自定义词典。发现一处免费下载的地址:LTP模型

哈工大pyltp分词:

# -*- coding: utf-8 -*-
import os
LTP_DATA_DIR = 'ltp_data_v3.4.0'  # ltp模型目录的路径
cws_model_path = os.path.join(LTP_DATA_DIR, 'cws.model')  # 分词模型路径,模型名称为`cws.model`

from pyltp import Segmentor
segmentor = Segmentor()  # 初始化实例
segmentor.load(cws_model_path)  # 加载模型
words = segmentor.segment('元芳你怎么看')  # 分词
print ('\t'.join(words))
segmentor.release()  # 释放模型

结果:

元芳	你	怎么	看

Process finished with exit code 0

同义词替换程序: 

# -*- coding: utf-8 -*-
#加载自定义词典

from pyltp import Segmentor


class SynonymsReplacer:
    def __init__(self, synonyms_file_path, cws_model_path,userdict_file_path):
        self.synonyms = self.load_synonyms(synonyms_file_path)
        self.segmentor = self.load_segmentor(cws_model_path,userdict_file_path)

    def __del__(self):
        """对象销毁时要释放pyltp分词模型"""
        self.segmentor.release()

    def load_segmentor(self, cws_model_path,userdict_file_path):
        """
        加载ltp分词模型
        :param cws_model_path: 分词模型路径
        :return: 分词器对象
        """
        segmentor = Segmentor()
        segmentor.load_with_lexicon(cws_model_path,userdict_file_path)
        return segmentor

    def segment(self, sentence):
        """调用pyltp的分词方法将str类型的句子分词并以list形式返回"""
        return list(self.segmentor.segment(sentence))

    def load_synonyms(self, file_path):
        """
        加载同义词表
        :param file_path: 同义词表路径
        :return: 同义词列表[[xx,xx],[xx,xx]...]
        """
        synonyms = []
        with open(file_path, 'r', encoding='utf-8') as file:
            for line in file:
                synonyms.append(line.strip().split(' '))
        return synonyms

    def permutation(self, data):
        """
        排列函数
        :param data: 需要进行排列的数据,列表形式
        :return:
        """
        assert len(data) >= 1, "Length of data must greater than 0."
        if len(data) == 1:  # 当data中只剩(有)一个词及其同义词的列表时,程序返回
            return data[0]
        else:
            head = data[0]
            tail = data[1:]  # 不断切分到只剩一个词的同义词列表

        tail = self.permutation(tail)

        permt = []
        for h in head:  # 构建两个词列表的同义词组合
            for t in tail:
                if isinstance(t, str):  # 传入的整个data的最后一个元素是一个一维列表,其中每个元素为str
                    permt.extend([[h] + [t]])
                elif isinstance(t, list):
                    permt.extend([[h] + t])
        return permt

    def get_syno_sents_list(self, input_sentence):
        """
        产生同义句,并返回同义句列表,返回的同义句列表没有包含该句本身
        :param input_sentence: 需要制造同义句的原始句子
        :return:
        """
        assert len(input_sentence) > 0, "Length of sentence must greater than 0."
        seged_sentence = self.segment(input_sentence)

        candidate_synonym_list = []  # 每个元素为句子中每个词及其同义词构成的列表
        for word in seged_sentence:
            word_synonyms = [word]  # 初始化一个词的同义词列表
            for syn in self.synonyms:  # 遍历同义词表,syn为其中的一条
                if word in syn:  # 如果句子中的词在同义词表某一条目中,将该条目中它的同义词添加到该词的同义词列表中
                    syn.remove(word)
                    word_synonyms.extend(syn)
            candidate_synonym_list.append(word_synonyms)  # 添加一个词语的同义词列表

        perm_sent = self.permutation(candidate_synonym_list)  # 将候选同义词列表们排列组合产生同义句

        syno_sent_list = [seged_sentence]
        for p in perm_sent:
            if p != seged_sentence:
                syno_sent_list.append(p)
        return syno_sent_list


if __name__ == '__main__':
    replacer = SynonymsReplacer(synonyms_file_path='tongyici.txt', cws_model_path='ltp_data_v3.4.0/cws.model',userdict_file_path = 'userdict.txt')
    test_sentence = '欠债不还犯法吗'
    _syn = replacer.get_syno_sents_list(test_sentence)
    for s in _syn:
        print(s)

测试例子的替换结果:

           Python实现同义词替换(哈工大pyltp分词)_第1张图片

参考:https://blog.csdn.net/hfutdog/article/details/81107170

ltp工具包下载:https://download.csdn.net/download/weixin_40547993/11141737

你可能感兴趣的:(文本预处理)