1. 前言
算法为王。
想学好前端,先练好内功,内功不行,就算招式练的再花哨,终究成不了高手;只有内功深厚者,前端之路才会走得更远。
笔者写的 JavaScript 数据结构与算法之美 系列用的语言是 JavaScript ,旨在入门数据结构与算法和方便以后复习。
文中包含了 十大经典排序算法 的思想、代码实现、一些例子、复杂度分析、动画、还有算法可视化工具。
这应该是目前最全的 JavaScript 十大经典排序算法 的讲解了吧。
2. 如何分析一个排序算法
复杂度分析是整个算法学习的精髓。
时间和空间复杂度的详解,请看 JavaScript 数据结构与算法之美 - 时间和空间复杂度。
学习排序算法,我们除了学习它的算法原理、代码实现之外,更重要的是要学会如何评价、分析一个排序算法。
分析一个排序算法,要从 执行效率、内存消耗、稳定性 三方面入手。
2.1 执行效率
1. 最好情况、最坏情况、平均情况时间复杂度我们在分析排序算法的时间复杂度时,要分别给出最好情况、最坏情况、平均情况下的时间复杂度。除此之外,你还要说出最好、最坏时间复杂度对应的要排序的原始数据是什么样的。
2. 时间复杂度的系数、常数 、低阶
我们知道,时间复杂度反应的是数据规模 n 很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。
但是实际的软件开发中,我们排序的可能是 10 个、100 个、1000 个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。
3. 比较次数和交换(或移动)次数
这一节和下一节讲的都是基于比较的排序算法。基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。
所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。
2.2 内存消耗
也就是看空间复杂度。还需要知道如下术语:
2.3 稳定性
3. 十大经典排序算法
3.1 冒泡排序(Bubble Sort)冒泡
思想特点
实现
// 冒泡排序(未优化)const bubbleSort = arr => { console.time('改进前冒泡排序耗时'); const length = arr.length; if (length <= 1) return; // i < length - 1 是因为外层只需要 length-1 次就排好了,第 length 次比较是多余的。 for (let i = 0; i < length - 1; i++) { // j < length - i - 1 是因为内层的 length-i-1 到 length-1 的位置已经排好了,不需要再比较一次。 for (let j = 0; j < length - i - 1; j++) { if (arr[j] > arr[j + 1]) { const temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; } } } console.log('改进前 arr :', arr); console.timeEnd('改进前冒泡排序耗时');};
console.time('改进前冒泡排序耗时');
const length = arr.length;
if (length <= 1) return;
// i < length - 1 是因为外层只需要 length-1 次就排好了,第 length 次比较是多余的。
for (let i = 0; i < length - 1; i++) {
// j < length - i - 1 是因为内层的 length-i-1 到 length-1 的位置已经排好了,不需要再比较一次。
for (let j = 0; j < length - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
const temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
console.log('改进前 arr :', arr);
console.timeEnd('改进前冒泡排序耗时');
};
优化:当某次冒泡操作已经没有数据交换时,说明已经达到完全有序,不用再继续执行后续的冒泡操作。// 冒泡排序(已优化)const bubbleSort2 = arr => { console.time('改进后冒泡排序耗时'); const length = arr.length; if (length <= 1) return; // i < length - 1 是因为外层只需要 length-1 次就排好了,第 length 次比较是多余的。 for (let i = 0; i < length - 1; i++) { let hasChange = false; // 提前退出冒泡循环的标志位 // j < length - i - 1 是因为内层的 length-i-1 到 length-1 的位置已经排好了,不需要再比较一次。 for (let j = 0; j < length - i - 1; j++) { if (arr[j] > arr[j + 1]) { const temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; hasChange = true; // 表示有数据交换 } } if (!hasChange) break; // 如果 false 说明所有元素已经到位,没有数据交换,提前退出 } console.log('改进后 arr :', arr); console.timeEnd('改进后冒泡排序耗时');};
console.time('改进后冒泡排序耗时');
const length = arr.length;
if (length <= 1) return;
// i < length - 1 是因为外层只需要 length-1 次就排好了,第 length 次比较是多余的。
for (let i = 0; i < length - 1; i++) {
let hasChange = false; // 提前退出冒泡循环的标志位
// j < length - i - 1 是因为内层的 length-i-1 到 length-1 的位置已经排好了,不需要再比较一次。
for (let j = 0; j < length - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
const temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
hasChange = true; // 表示有数据交换
}
}if (!hasChange) break; // 如果 false 说明所有元素已经到位,没有数据交换,提前退出
}
console.log('改进后 arr :', arr);
console.timeEnd('改进后冒泡排序耗时');
};
测试// 测试const arr = [7, 8, 4, 5, 6, 3, 2, 1];bubbleSort(arr);// 改进前 arr : [1, 2, 3, 4, 5, 6, 7, 8]// 改进前冒泡排序耗时: 0.43798828125msconst arr2 = [7, 8, 4, 5, 6, 3, 2, 1];bubbleSort2(arr2);// 改进后 arr : [1, 2, 3, 4, 5, 6, 7, 8]// 改进后冒泡排序耗时: 0.318115234375ms
bubbleSort(arr);
// 改进前 arr : [1, 2, 3, 4, 5, 6, 7, 8]
// 改进前冒泡排序耗时: 0.43798828125msconst arr2 = [7, 8, 4, 5, 6, 3, 2, 1];
bubbleSort2(arr2);
// 改进后 arr : [1, 2, 3, 4, 5, 6, 7, 8]
// 改进后冒泡排序耗时: 0.318115234375ms
分析
动画
冒泡排序动画
3.2 插入排序(Insertion Sort)
插入排序又为分为 直接插入排序 和优化后的 拆半插入排序 与 希尔排序,我们通常说的插入排序是指直接插入排序。
一、直接插入
思想
一般人打扑克牌,整理牌的时候,都是按牌的大小(从小到大或者从大到小)整理牌的,那每摸一张新牌,就扫描自己的牌,把新牌插入到相应的位置。
插入排序的工作原理:通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
步骤
实现
// 插入排序const insertionSort = array => { const len = array.length; if (len <= 1) return let preIndex, current; for (let i = 1; i < len; i++) { preIndex = i - 1; //待比较元素的下标 current = array[i]; //当前元素 while (preIndex >= 0 && array[preIndex] > current) { //前置条件之一: 待比较元素比当前元素大 array[preIndex + 1] = array[preIndex]; //将待比较元素后移一位 preIndex--; //游标前移一位 } if (preIndex + 1 != i) { //避免同一个元素赋值给自身 array[preIndex + 1] = current; //将当前元素插入预留空位 console.log('array :', array); } } return array;};
const len = array.length;
if (len <= 1) returnlet preIndex, current;
for (let i = 1; i < len; i++) {
preIndex = i - 1; //待比较元素的下标
current = array[i]; //当前元素
while (preIndex >= 0 && array[preIndex] > current) {
//前置条件之一: 待比较元素比当前元素大
array[preIndex + 1] = array[preIndex]; //将待比较元素后移一位
preIndex--; //游标前移一位
}
if (preIndex + 1 != i) {
//避免同一个元素赋值给自身
array[preIndex + 1] = current; //将当前元素插入预留空位
console.log('array :', array);
}
}
return array;
};
测试// 测试const array = [5, 4, 3, 2, 1];console.log("原始 array :", array);insertionSort(array);// 原始 array: [5, 4, 3, 2, 1]// array: [4, 5, 3, 2, 1]// array: [3, 4, 5, 2, 1]// array: [2, 3, 4, 5, 1]// array: [1, 2, 3, 4, 5]
console.log("原始 array :", array);
insertionSort(array);
// 原始 array: [5, 4, 3, 2, 1]
// array: [4, 5, 3, 2, 1]
// array: [3, 4, 5, 2, 1]
// array: [2, 3, 4, 5, 1]
// array: [1, 2, 3, 4, 5]
分析动画
insertion-sort.gif
二、拆半插入
插入排序也有一种优化算法,叫做拆半插入。
思想
折半插入排序是直接插入排序的升级版,鉴于插入排序第一部分为已排好序的数组,我们不必按顺序依次寻找插入点,只需比较它们的中间值与待插入元素的大小即可。
步骤
注:x >> 1 是位运算中的右移运算,表示右移一位,等同于 x 除以 2 再取整,即 x >> 1 == Math.floor(x/2) 。
// 折半插入排序const binaryInsertionSort = array => { const len = array.length; if (len <= 1) return; let current, i, j, low, high, m; for (i = 1; i < len; i++) { low = 0; high = i - 1; current = array[i]; while (low <= high) { //步骤 1 & 2 : 折半查找 m = (low + high) >> 1; // 注: x>>1 是位运算中的右移运算, 表示右移一位, 等同于 x 除以 2 再取整, 即 x>>1 == Math.floor(x/2) . if (array[i] >= array[m]) { //值相同时, 切换到高半区,保证稳定性 low = m + 1; //插入点在高半区 } else { high = m - 1; //插入点在低半区 } } for (j = i; j > low; j--) { //步骤 3: 插入位置之后的元素全部后移一位 array[j] = array[j - 1]; console.log('array2 :', JSON.parse(JSON.stringify(array))); } array[low] = current; //步骤 4: 插入该元素 } console.log('array2 :', JSON.parse(JSON.stringify(array))); return array;};
const len = array.length;
if (len <= 1) return;let current, i, j, low, high, m;
for (i = 1; i < len; i++) {
low = 0;
high = i - 1;
current = array[i];while (low <= high) {
//步骤 1 & 2 : 折半查找
m = (low + high) >> 1; // 注: x>>1 是位运算中的右移运算, 表示右移一位, 等同于 x 除以 2 再取整, 即 x>>1 == Math.floor(x/2) .
if (array[i] >= array[m]) {
//值相同时, 切换到高半区,保证稳定性
low = m + 1; //插入点在高半区
} else {
high = m - 1; //插入点在低半区
}
}
for (j = i; j > low; j--) {
//步骤 3: 插入位置之后的元素全部后移一位
array[j] = array[j - 1];
console.log('array2 :', JSON.parse(JSON.stringify(array)));
}
array[low] = current; //步骤 4: 插入该元素
}
console.log('array2 :', JSON.parse(JSON.stringify(array)));
return array;
};
测试const array2 = [5, 4, 3, 2, 1];console.log('原始 array2:', array2);binaryInsertionSort(array2);// 原始 array2: [5, 4, 3, 2, 1]// array2 : [5, 5, 3, 2, 1]// array2 : [4, 5, 5, 2, 1]// array2 : [4, 4, 5, 2, 1]// array2 : [3, 4, 5, 5, 1]// array2 : [3, 4, 4, 5, 1]// array2 : [3, 3, 4, 5, 1]// array2 : [2, 3, 4, 5, 5]// array2 : [2, 3, 4, 4, 5]// array2 : [2, 3, 3, 4, 5]// array2 : [2, 2, 3, 4, 5]// array2 : [1, 2, 3, 4, 5]
binaryInsertionSort(array2);
// 原始 array2: [5, 4, 3, 2, 1]
// array2 : [5, 5, 3, 2, 1]
// array2 : [4, 5, 5, 2, 1]
// array2 : [4, 4, 5, 2, 1]
// array2 : [3, 4, 5, 5, 1]
// array2 : [3, 4, 4, 5, 1]
// array2 : [3, 3, 4, 5, 1]
// array2 : [2, 3, 4, 5, 5]
// array2 : [2, 3, 4, 4, 5]
// array2 : [2, 3, 3, 4, 5]
// array2 : [2, 2, 3, 4, 5]
// array2 : [1, 2, 3, 4, 5]
注意:和直接插入排序类似,折半插入排序每次交换的是相邻的且值为不同的元素,它并不会改变值相同的元素之间的顺序,因此它是稳定的。
三、希尔排序
希尔排序是一个平均时间复杂度为 O(n log n) 的算法,会在下一个章节和 归并排序、快速排序、堆排序 一起讲,本文就不展开了。
3.3 选择排序(Selection Sort)
思路
选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。
步骤
首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
重复第二步,直到所有元素均排序完毕。
实现
const selectionSort = array => { const len = array.length; let minIndex, temp; for (let i = 0; i < len - 1; i++) { minIndex = i; for (let j = i + 1; j < len; j++) { if (array[j] < array[minIndex]) { // 寻找最小的数 minIndex = j; // 将最小数的索引保存 } } temp = array[i]; array[i] = array[minIndex]; array[minIndex] = temp; console.log('array: ', array); } return array;};
let minIndex, temp;
for (let i = 0; i < len - 1; i++) {
minIndex = i;
for (let j = i + 1; j < len; j++) {
if (array[j] < array[minIndex]) {
// 寻找最小的数
minIndex = j; // 将最小数的索引保存
}
}
temp = array[i];
array[i] = array[minIndex];
array[minIndex] = temp;
console.log('array: ', array);
}
return array;
};
测试// 测试const array = [5, 4, 3, 2, 1];console.log('原始array:', array);selectionSort(array);// 原始 array: [5, 4, 3, 2, 1]// array: [1, 4, 3, 2, 5]// array: [1, 2, 3, 4, 5]// array: [1, 2, 3, 4, 5]// array: [1, 2, 3, 4, 5]
console.log('原始array:', array);
selectionSort(array);
// 原始 array: [5, 4, 3, 2, 1]
// array: [1, 4, 3, 2, 5]
// array: [1, 2, 3, 4, 5]
// array: [1, 2, 3, 4, 5]
// array: [1, 2, 3, 4, 5]
分析动画
selection-sort.gif
3.4 归并排序(Merge Sort)
思想
排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。
归并排序采用的是分治思想。
分治,顾名思义,就是分而治之,将一个大问题分解成小的子问题来解决。小的子问题解决了,大问题也就解决了。
merge-sort-example.png
注:x >> 1 是位运算中的右移运算,表示右移一位,等同于 x 除以 2 再取整,即 x >> 1 === Math.floor(x / 2) 。
实现
const mergeSort = arr => { //采用自上而下的递归方法 const len = arr.length; if (len < 2) { return arr; } // length >> 1 和 Math.floor(len / 2) 等价 let middle = Math.floor(len / 2), left = arr.slice(0, middle), right = arr.slice(middle); // 拆分为两个子数组 return merge(mergeSort(left), mergeSort(right));};const merge = (left, right) => { const result = []; while (left.length && right.length) { // 注意: 判断的条件是小于或等于,如果只是小于,那么排序将不稳定. if (left[0] <= right[0]) { result.push(left.shift()); } else { result.push(right.shift()); } } while (left.length) result.push(left.shift()); while (right.length) result.push(right.shift()); return result;};arr => {
//采用自上而下的递归方法
const len = arr.length;
if (len < 2) {
return arr;
}
// length >> 1 和 Math.floor(len / 2) 等价
let middle = Math.floor(len / 2),
left = arr.slice(0, middle),
right = arr.slice(middle); // 拆分为两个子数组
return merge(mergeSort(left), mergeSort(right));
};const merge = (left, right) => {
const result = [];while (left.length && right.length) {
// 注意: 判断的条件是小于或等于,如果只是小于,那么排序将不稳定.
if (left[0] <= right[0]) {
result.push(left.shift());
} else {
result.push(right.shift());
}
}while (left.length) result.push(left.shift());
while (right.length) result.push(right.shift());
return result;
};
测试// 测试const arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];console.time('归并排序耗时');console.log('arr :', mergeSort(arr));console.timeEnd('归并排序耗时');// arr : [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]// 归并排序耗时: 0.739990234375ms
const arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.time('归并排序耗时');
console.log('arr :', mergeSort(arr));
console.timeEnd('归并排序耗时');
// arr : [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
// 归并排序耗时: 0.739990234375ms
分析动画
merge-sort.gif
3.5 快速排序 (Quick Sort)
快速排序的特点就是快,而且效率高!它是处理大数据最快的排序算法之一。
思想
特点:快速,常用。
缺点:需要另外声明两个数组,浪费了内存空间资源。
实现
方法一:
const quickSort1 = arr => { if (arr.length <= 1) { return arr; } //取基准点 const midIndex = Math.floor(arr.length / 2); //取基准点的值,splice(index,1) 则返回的是含有被删除的元素的数组。 const valArr = arr.splice(midIndex, 1); const midIndexVal = valArr[0]; const left = []; //存放比基准点小的数组 const right = []; //存放比基准点大的数组 //遍历数组,进行判断分配 for (let i = 0; i < arr.length; i++) { if (arr[i] < midIndexVal) { left.push(arr[i]); //比基准点小的放在左边数组 } else { right.push(arr[i]); //比基准点大的放在右边数组 } } //递归执行以上操作,对左右两个数组进行操作,直到数组长度为 <= 1 return quickSort1(left).concat(midIndexVal, quickSort1(right));};const array2 = [5, 4, 3, 2, 1];console.log('quickSort1 ', quickSort1(array2));// quickSort1: [1, 2, 3, 4, 5]arr => {
if (arr.length <= 1) {
return arr;
}
//取基准点
const midIndex = Math.floor(arr.length / 2);
//取基准点的值,splice(index,1) 则返回的是含有被删除的元素的数组。
const valArr = arr.splice(midIndex, 1);
const midIndexVal = valArr[0];
const left = []; //存放比基准点小的数组
const right = []; //存放比基准点大的数组
//遍历数组,进行判断分配
for (let i = 0; i < arr.length; i++) {
if (arr[i] < midIndexVal) {
left.push(arr[i]); //比基准点小的放在左边数组
} else {
right.push(arr[i]); //比基准点大的放在右边数组
}
}
//递归执行以上操作,对左右两个数组进行操作,直到数组长度为 <= 1
return quickSort1(left).concat(midIndexVal, quickSort1(right));
};
const array2 = [5, 4, 3, 2, 1];
console.log('quickSort1 ', quickSort1(array2));
// quickSort1: [1, 2, 3, 4, 5]
方法二:// 快速排序const quickSort = (arr, left, right) => { let len = arr.length, partitionIndex; left = typeof left != 'number' ? 0 : left; right = typeof right != 'number' ? len - 1 : right; if (left < right) { partitionIndex = partition(arr, left, right); quickSort(arr, left, partitionIndex - 1); quickSort(arr, partitionIndex + 1, right); } return arr;};const partition = (arr, left, right) => { //分区操作 let pivot = left, //设定基准值(pivot) index = pivot + 1; for (let i = index; i <= right; i++) { if (arr[i] < arr[pivot]) { swap(arr, i, index); index++; } } swap(arr, pivot, index - 1); return index - 1;};const swap = (arr, i, j) => { let temp = arr[i]; arr[i] = arr[j]; arr[j] = temp;};
const quickSort = (arr, left, right) => {
let len = arr.length,
partitionIndex;
left = typeof left != 'number' ? 0 : left;
right = typeof right != 'number' ? len - 1 : right;if (left < right) {
partitionIndex = partition(arr, left, right);
quickSort(arr, left, partitionIndex - 1);
quickSort(arr, partitionIndex + 1, right);
}
return arr;
};const partition = (arr, left, right) => {
//分区操作
let pivot = left, //设定基准值(pivot)
index = pivot + 1;
for (let i = index; i <= right; i++) {
if (arr[i] < arr[pivot]) {
swap(arr, i, index);
index++;
}
}
swap(arr, pivot, index - 1);
return index - 1;
};const swap = (arr, i, j) => {
let temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
};
测试// 测试const array = [5, 4, 3, 2, 1];console.log('原始array:', array);const newArr = quickSort(array);console.log('newArr:', newArr);// 原始 array: [5, 4, 3, 2, 1]// newArr: [1, 4, 3, 2, 5]
const array = [5, 4, 3, 2, 1];
console.log('原始array:', array);
const newArr = quickSort(array);
console.log('newArr:', newArr);
// 原始 array: [5, 4, 3, 2, 1]
// newArr: [1, 4, 3, 2, 5]
分析动画
quick-sort.gif
解答开篇问题
快排和归并用的都是分治思想,递推公式和递归代码也非常相似,那它们的区别在哪里呢 ?
快速排序与归并排序
可以发现:
3.6 希尔排序(Shell Sort)
思想
过程
举个易于理解的例子:[35, 33, 42, 10, 14, 19, 27, 44],我们采取间隔 4。创建一个位于 4 个位置间隔的所有值的虚拟子列表。下面这些值是 { 35, 14 },{ 33, 19 },{ 42, 27 } 和 { 10, 44 }。
栗子
我们比较每个子列表中的值,并在原始数组中交换它们(如果需要)。完成此步骤后,新数组应如下所示。
栗子
然后,我们采用 2 的间隔,这个间隙产生两个子列表:{ 14, 27, 35, 42 }, { 19, 10, 33, 44 }。
栗子
我们比较并交换原始数组中的值(如果需要)。完成此步骤后,数组变成:[14, 10, 27, 19, 35, 33, 42, 44],图如下所示,10 与 19 的位置互换一下。
image.png
最后,我们使用值间隔 1 对数组的其余部分进行排序,Shell sort 使用插入排序对数组进行排序。
栗子
实现
const shellSort = arr => { let len = arr.length, temp, gap = 1; console.time('希尔排序耗时'); while (gap < len / 3) { //动态定义间隔序列 gap = gap * 3 + 1; } for (gap; gap > 0; gap = Math.floor(gap / 3)) { for (let i = gap; i < len; i++) { temp = arr[i]; let j = i - gap; for (; j >= 0 && arr[j] > temp; j -= gap) { arr[j + gap] = arr[j]; } arr[j + gap] = temp; console.log('arr :', arr); } } console.timeEnd('希尔排序耗时'); return arr;};arr => {
let len = arr.length,
temp,
gap = 1;
console.time('希尔排序耗时');
while (gap < len / 3) {
//动态定义间隔序列
gap = gap * 3 + 1;
}
for (gap; gap > 0; gap = Math.floor(gap / 3)) {
for (let i = gap; i < len; i++) {
temp = arr[i];
let j = i - gap;
for (; j >= 0 && arr[j] > temp; j -= gap) {
arr[j + gap] = arr[j];
}
arr[j + gap] = temp;
console.log('arr :', arr);
}
}
console.timeEnd('希尔排序耗时');
return arr;
};
测试// 测试const array = [35, 33, 42, 10, 14, 19, 27, 44];console.log('原始array:', array);const newArr = shellSort(array);console.log('newArr:', newArr);// 原始 array: [35, 33, 42, 10, 14, 19, 27, 44]// arr : [14, 33, 42, 10, 35, 19, 27, 44]// arr : [14, 19, 42, 10, 35, 33, 27, 44]// arr : [14, 19, 27, 10, 35, 33, 42, 44]// arr : [14, 19, 27, 10, 35, 33, 42, 44]// arr : [14, 19, 27, 10, 35, 33, 42, 44]// arr : [14, 19, 27, 10, 35, 33, 42, 44]// arr : [10, 14, 19, 27, 35, 33, 42, 44]// arr : [10, 14, 19, 27, 35, 33, 42, 44]// arr : [10, 14, 19, 27, 33, 35, 42, 44]// arr : [10, 14, 19, 27, 33, 35, 42, 44]// arr : [10, 14, 19, 27, 33, 35, 42, 44]// 希尔排序耗时: 3.592041015625ms// newArr: [10, 14, 19, 27, 33, 35, 42, 44]
const array = [35, 33, 42, 10, 14, 19, 27, 44];
console.log('原始array:', array);
const newArr = shellSort(array);
console.log('newArr:', newArr);
// 原始 array: [35, 33, 42, 10, 14, 19, 27, 44]
// arr : [14, 33, 42, 10, 35, 19, 27, 44]
// arr : [14, 19, 42, 10, 35, 33, 27, 44]
// arr : [14, 19, 27, 10, 35, 33, 42, 44]
// arr : [14, 19, 27, 10, 35, 33, 42, 44]
// arr : [14, 19, 27, 10, 35, 33, 42, 44]
// arr : [14, 19, 27, 10, 35, 33, 42, 44]
// arr : [10, 14, 19, 27, 35, 33, 42, 44]
// arr : [10, 14, 19, 27, 35, 33, 42, 44]
// arr : [10, 14, 19, 27, 33, 35, 42, 44]
// arr : [10, 14, 19, 27, 33, 35, 42, 44]
// arr : [10, 14, 19, 27, 33, 35, 42, 44]
// 希尔排序耗时: 3.592041015625ms
// newArr: [10, 14, 19, 27, 33, 35, 42, 44]
分析动画
shell-sort.gif
3.7 堆排序(Heap Sort)
堆的定义
堆其实是一种特殊的树。只要满足这两点,它就是一个堆。
对于每个节点的值都大于等于子树中每个节点值的堆,我们叫作大顶堆。对于每个节点的值都小于等于子树中每个节点值的堆,我们叫作小顶堆。
区分堆、大顶堆、小顶堆
其中图 1 和 图 2 是大顶堆,图 3 是小顶堆,图 4 不是堆。除此之外,从图中还可以看出来,对于同一组数据,我们可以构建多种不同形态的堆。
思想
将初始待排序关键字序列 (R1, R2 .... Rn) 构建成大顶堆,此堆为初始的无序区;
将堆顶元素 R[1] 与最后一个元素 R[n] 交换,此时得到新的无序区 (R1, R2, ..... Rn-1) 和新的有序区 (Rn) ,且满足 R[1, 2 ... n-1] <= R[n]。
由于交换后新的堆顶 R[1] 可能违反堆的性质,因此需要对当前无序区 (R1, R2 ...... Rn-1) 调整为新堆,然后再次将 R[1] 与无序区最后一个元素交换,得到新的无序区 (R1, R2 .... Rn-2) 和新的有序区 (Rn-1, Rn)。不断重复此过程,直到有序区的元素个数为 n - 1,则整个排序过程完成。
实现
// 堆排序const heapSort = array => { console.time('堆排序耗时'); // 初始化大顶堆,从第一个非叶子结点开始 for (let i = Math.floor(array.length / 2 - 1); i >= 0; i--) { heapify(array, i, array.length); } // 排序,每一次 for 循环找出一个当前最大值,数组长度减一 for (let i = Math.floor(array.length - 1); i > 0; i--) { // 根节点与最后一个节点交换 swap(array, 0, i); // 从根节点开始调整,并且最后一个结点已经为当前最大值,不需要再参与比较,所以第三个参数为 i,即比较到最后一个结点前一个即可 heapify(array, 0, i); } console.timeEnd('堆排序耗时'); return array;};// 交换两个节点const swap = (array, i, j) => { let temp = array[i]; array[i] = array[j]; array[j] = temp;};// 将 i 结点以下的堆整理为大顶堆,注意这一步实现的基础实际上是:// 假设结点 i 以下的子堆已经是一个大顶堆,heapify 函数实现的// 功能是实际上是:找到 结点 i 在包括结点 i 的堆中的正确位置。// 后面将写一个 for 循环,从第一个非叶子结点开始,对每一个非叶子结点// 都执行 heapify 操作,所以就满足了结点 i 以下的子堆已经是一大顶堆const heapify = (array, i, length) => { let temp = array[i]; // 当前父节点 // j < length 的目的是对结点 i 以下的结点全部做顺序调整 for (let j = 2 * i + 1; j < length; j = 2 * j + 1) { temp = array[i]; // 将 array[i] 取出,整个过程相当于找到 array[i] 应处于的位置 if (j + 1 < length && array[j] < array[j + 1]) { j++; // 找到两个孩子中较大的一个,再与父节点比较 } if (temp < array[j]) { swap(array, i, j); // 如果父节点小于子节点:交换;否则跳出 i = j; // 交换后,temp 的下标变为 j } else { break; } }};
const heapSort = array => {
console.time('堆排序耗时');
// 初始化大顶堆,从第一个非叶子结点开始
for (let i = Math.floor(array.length / 2 - 1); i >= 0; i--) {
heapify(array, i, array.length);
}
// 排序,每一次 for 循环找出一个当前最大值,数组长度减一
for (let i = Math.floor(array.length - 1); i > 0; i--) {
// 根节点与最后一个节点交换
swap(array, 0, i);
// 从根节点开始调整,并且最后一个结点已经为当前最大值,不需要再参与比较,所以第三个参数为 i,即比较到最后一个结点前一个即可
heapify(array, 0, i);
}
console.timeEnd('堆排序耗时');
return array;
};// 交换两个节点
const swap = (array, i, j) => {
let temp = array[i];
array[i] = array[j];
array[j] = temp;
};// 将 i 结点以下的堆整理为大顶堆,注意这一步实现的基础实际上是:
// 假设结点 i 以下的子堆已经是一个大顶堆,heapify 函数实现的
// 功能是实际上是:找到 结点 i 在包括结点 i 的堆中的正确位置。
// 后面将写一个 for 循环,从第一个非叶子结点开始,对每一个非叶子结点
// 都执行 heapify 操作,所以就满足了结点 i 以下的子堆已经是一大顶堆
const heapify = (array, i, length) => {
let temp = array[i]; // 当前父节点
// j < length 的目的是对结点 i 以下的结点全部做顺序调整
for (let j = 2 * i + 1; j < length; j = 2 * j + 1) {
temp = array[i]; // 将 array[i] 取出,整个过程相当于找到 array[i] 应处于的位置
if (j + 1 < length && array[j] < array[j + 1]) {
j++; // 找到两个孩子中较大的一个,再与父节点比较
}
if (temp < array[j]) {
swap(array, i, j); // 如果父节点小于子节点:交换;否则跳出
i = j; // 交换后,temp 的下标变为 j
} else {
break;
}
}
};
测试const array = [4, 6, 8, 5, 9, 1, 2, 5, 3, 2];console.log('原始array:', array);const newArr = heapSort(array);console.log('newArr:', newArr);// 原始 array: [4, 6, 8, 5, 9, 1, 2, 5, 3, 2]// 堆排序耗时: 0.15087890625ms// newArr: [1, 2, 2, 3, 4, 5, 5, 6, 8, 9]4, 6, 8, 5, 9, 1, 2, 5, 3, 2];
console.log('原始array:', array);
const newArr = heapSort(array);
console.log('newArr:', newArr);
// 原始 array: [4, 6, 8, 5, 9, 1, 2, 5, 3, 2]
// 堆排序耗时: 0.15087890625ms
// newArr: [1, 2, 2, 3, 4, 5, 5, 6, 8, 9]
分析动画
微信 gif 图的限制,堆的动画请点击原文
heap-sort2.gif
3.8 桶排序(Bucket Sort)
桶排序是计数排序的升级版,也采用了分治思想。
思想
比如:
桶排序利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。
为了使桶排序更加高效,我们需要做到这两点:
桶排序的核心:就在于怎么把元素平均分配到每个桶里,合理的分配将大大提高排序的效率。
实现
// 桶排序const bucketSort = (array, bucketSize) => { if (array.length === 0) { return array; } console.time('桶排序耗时'); let i = 0; let minValue = array[0]; let maxValue = array[0]; for (i = 1; i < array.length; i++) { if (array[i] < minValue) { minValue = array[i]; //输入数据的最小值 } else if (array[i] > maxValue) { maxValue = array[i]; //输入数据的最大值 } } //桶的初始化 const DEFAULT_BUCKET_SIZE = 5; //设置桶的默认数量为 5 bucketSize = bucketSize || DEFAULT_BUCKET_SIZE; const bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1; const buckets = new Array(bucketCount); for (i = 0; i < buckets.length; i++) { buckets[i] = []; } //利用映射函数将数据分配到各个桶中 for (i = 0; i < array.length; i++) { buckets[Math.floor((array[i] - minValue) / bucketSize)].push(array[i]); } array.length = 0; for (i = 0; i < buckets.length; i++) { quickSort(buckets[i]); //对每个桶进行排序,这里使用了快速排序 for (var j = 0; j < buckets[i].length; j++) { array.push(buckets[i][j]); } } console.timeEnd('桶排序耗时'); return array;};// 快速排序const quickSort = (arr, left, right) => { let len = arr.length, partitionIndex; left = typeof left != 'number' ? 0 : left; right = typeof right != 'number' ? len - 1 : right; if (left < right) { partitionIndex = partition(arr, left, right); quickSort(arr, left, partitionIndex - 1); quickSort(arr, partitionIndex + 1, right); } return arr;};const partition = (arr, left, right) => { //分区操作 let pivot = left, //设定基准值(pivot) index = pivot + 1; for (let i = index; i <= right; i++) { if (arr[i] < arr[pivot]) { swap(arr, i, index); index++; } } swap(arr, pivot, index - 1); return index - 1;};const swap = (arr, i, j) => { let temp = arr[i]; arr[i] = arr[j]; arr[j] = temp;};
const bucketSort = (array, bucketSize) => {
if (array.length === 0) {
return array;
}console.time('桶排序耗时');
let i = 0;
let minValue = array[0];
let maxValue = array[0];
for (i = 1; i < array.length; i++) {
if (array[i] < minValue) {
minValue = array[i]; //输入数据的最小值
} else if (array[i] > maxValue) {
maxValue = array[i]; //输入数据的最大值
}
}//桶的初始化
const DEFAULT_BUCKET_SIZE = 5; //设置桶的默认数量为 5
bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;
const bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;
const buckets = new Array(bucketCount);
for (i = 0; i < buckets.length; i++) {
buckets[i] = [];
}//利用映射函数将数据分配到各个桶中
for (i = 0; i < array.length; i++) {
buckets[Math.floor((array[i] - minValue) / bucketSize)].push(array[i]);
}array.length = 0;
for (i = 0; i < buckets.length; i++) {
quickSort(buckets[i]); //对每个桶进行排序,这里使用了快速排序
for (var j = 0; j < buckets[i].length; j++) {
array.push(buckets[i][j]);
}
}
console.timeEnd('桶排序耗时');return array;
};// 快速排序
const quickSort = (arr, left, right) => {
let len = arr.length,
partitionIndex;
left = typeof left != 'number' ? 0 : left;
right = typeof right != 'number' ? len - 1 : right;if (left < right) {
partitionIndex = partition(arr, left, right);
quickSort(arr, left, partitionIndex - 1);
quickSort(arr, partitionIndex + 1, right);
}
return arr;
};const partition = (arr, left, right) => {
//分区操作
let pivot = left, //设定基准值(pivot)
index = pivot + 1;
for (let i = index; i <= right; i++) {
if (arr[i] < arr[pivot]) {
swap(arr, i, index);
index++;
}
}
swap(arr, pivot, index - 1);
return index - 1;
};const swap = (arr, i, j) => {
let temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
};
测试const array = [4, 6, 8, 5, 9, 1, 2, 5, 3, 2];console.log('原始array:', array);const newArr = bucketSort(array);console.log('newArr:', newArr);// 原始 array: [4, 6, 8, 5, 9, 1, 2, 5, 3, 2]// 堆排序耗时: 0.133056640625ms// newArr: [1, 2, 2, 3, 4, 5, 5, 6, 8, 9]4, 6, 8, 5, 9, 1, 2, 5, 3, 2];
console.log('原始array:', array);
const newArr = bucketSort(array);
console.log('newArr:', newArr);
// 原始 array: [4, 6, 8, 5, 9, 1, 2, 5, 3, 2]
// 堆排序耗时: 0.133056640625ms
// newArr: [1, 2, 2, 3, 4, 5, 5, 6, 8, 9]
分析桶排序最好情况下使用线性时间 O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度,因为其它部分的时间复杂度都为 O(n)。
很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大。
适用场景
动画
bocket-sort.gif
3.9 计数排序(Counting Sort)
思想
关键在于理解最后反向填充时的操作。
使用条件
实现
方法一:
const countingSort = array => { let len = array.length, result = [], countArr = [], min = (max = array[0]); console.time('计数排序耗时'); for (let i = 0; i < len; i++) { // 获取最小,最大 值 min = min <= array[i] ? min : array[i]; max = max >= array[i] ? max : array[i]; countArr[array[i]] = countArr[array[i]] ? countArr[array[i]] + 1 : 1; } console.log('countArr :', countArr); // 从最小值 -> 最大值,将计数逐项相加 for (let j = min; j < max; j++) { countArr[j + 1] = (countArr[j + 1] || 0) + (countArr[j] || 0); } console.log('countArr 2:', countArr); // countArr 中,下标为 array 数值,数据为 array 数值出现次数;反向填充数据进入 result 数据 for (let k = len - 1; k >= 0; k--) { // result[位置] = array 数据 result[countArr[array[k]] - 1] = array[k]; // 减少 countArr 数组中保存的计数 countArr[array[k]]--; // console.log("array[k]:", array[k], 'countArr[array[k]] :', countArr[array[k]],) console.log('result:', result); } console.timeEnd('计数排序耗时'); return result;};array => {
let len = array.length,
result = [],
countArr = [],
min = (max = array[0]);
console.time('计数排序耗时');
for (let i = 0; i < len; i++) {
// 获取最小,最大 值
min = min <= array[i] ? min : array[i];
max = max >= array[i] ? max : array[i];
countArr[array[i]] = countArr[array[i]] ? countArr[array[i]] + 1 : 1;
}
console.log('countArr :', countArr);
// 从最小值 -> 最大值,将计数逐项相加
for (let j = min; j < max; j++) {
countArr[j + 1] = (countArr[j + 1] || 0) + (countArr[j] || 0);
}
console.log('countArr 2:', countArr);
// countArr 中,下标为 array 数值,数据为 array 数值出现次数;反向填充数据进入 result 数据
for (let k = len - 1; k >= 0; k--) {
// result[位置] = array 数据
result[countArr[array[k]] - 1] = array[k];
// 减少 countArr 数组中保存的计数
countArr[array[k]]--;
// console.log("array[k]:", array[k], 'countArr[array[k]] :', countArr[array[k]],)
console.log('result:', result);
}
console.timeEnd('计数排序耗时');
return result;
};
测试const array = [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2];console.log('原始 array: ', array);const newArr = countingSort(array);console.log('newArr: ', newArr);// 原始 array: [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2]// 计数排序耗时: 5.6708984375ms// newArr: [1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 6, 7, 7, 8, 8, 9, 9]2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2];
console.log('原始 array: ', array);
const newArr = countingSort(array);
console.log('newArr: ', newArr);
// 原始 array: [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2]
// 计数排序耗时: 5.6708984375ms
// newArr: [1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 6, 7, 7, 8, 8, 9, 9]测试结果
方法二:const countingSort2 = (arr, maxValue) => { console.time('计数排序耗时'); maxValue = maxValue || arr.length; let bucket = new Array(maxValue + 1), sortedIndex = 0; (arrLen = arr.length), (bucketLen = maxValue + 1); for (let i = 0; i < arrLen; i++) { if (!bucket[arr[i]]) { bucket[arr[i]] = 0; } bucket[arr[i]]++; } for (let j = 0; j < bucketLen; j++) { while (bucket[j] > 0) { arr[sortedIndex++] = j; bucket[j]--; } } console.timeEnd('计数排序耗时'); return arr;};(arr, maxValue) => {
console.time('计数排序耗时');
maxValue = maxValue || arr.length;
let bucket = new Array(maxValue + 1),
sortedIndex = 0;
(arrLen = arr.length), (bucketLen = maxValue + 1);for (let i = 0; i < arrLen; i++) {
if (!bucket[arr[i]]) {
bucket[arr[i]] = 0;
}
bucket[arr[i]]++;
}for (let j = 0; j < bucketLen; j++) {
while (bucket[j] > 0) {
arr[sortedIndex++] = j;
bucket[j]--;
}
}
console.timeEnd('计数排序耗时');
return arr;
};
测试const array2 = [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2];console.log('原始 array2: ', array2);const newArr2 = countingSort2(array2, 21);console.log('newArr2: ', newArr2);// 原始 array: [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2]// 计数排序耗时: 0.043212890625ms// newArr: [1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 6, 7, 7, 8, 8, 9, 9]2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2];
console.log('原始 array2: ', array2);
const newArr2 = countingSort2(array2, 21);
console.log('newArr2: ', newArr2);
// 原始 array: [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2]
// 计数排序耗时: 0.043212890625ms
// newArr: [1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 6, 7, 7, 8, 8, 9, 9]
例子可以认为,计数排序其实是桶排序的一种特殊情况。
当要排序的 n 个数据,所处的范围并不大的时候,比如最大值是 k,我们就可以把数据划分成 k 个桶。每个桶内的数据值都是相同的,省掉了桶内排序的时间。
我们都经历过高考,高考查分数系统你还记得吗?我们查分数的时候,系统会显示我们的成绩以及所在省的排名。如果你所在的省有 50 万考生,如何通过成绩快速排序得出名次呢?
分析
动画
counting-sort.gif
3.10 基数排序(Radix Sort)
思想
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。
例子
假设我们有 10 万个手机号码,希望将这 10 万个手机号码从小到大排序,你有什么比较快速的排序方法呢 ?
这个问题里有这样的规律:假设要比较两个手机号码 a,b 的大小,如果在前面几位中,a 手机号码已经比 b 手机号码大了,那后面的几位就不用看了。所以是基于位来比较的。
桶排序、计数排序能派上用场吗 ?手机号码有 11 位,范围太大,显然不适合用这两种排序算法。针对这个排序问题,有没有时间复杂度是 O(n) 的算法呢 ?有,就是基数排序。
使用条件
方案
按照优先从高位或低位来排序有两种实现方案:
实现
/** * name: 基数排序 * @param array 待排序数组 * @param max 最大位数 */const radixSort = (array, max) => { console.time('计数排序耗时'); const buckets = []; let unit = 10, base = 1; for (let i = 0; i < max; i++, base *= 10, unit *= 10) { for (let j = 0; j < array.length; j++) { let index = ~~((array[j] % unit) / base); //依次过滤出个位,十位等等数字 if (buckets[index] == null) { buckets[index] = []; //初始化桶 } buckets[index].push(array[j]); //往不同桶里添加数据 } let pos = 0, value; for (let j = 0, length = buckets.length; j < length; j++) { if (buckets[j] != null) { while ((value = buckets[j].shift()) != null) { array[pos++] = value; //将不同桶里数据挨个捞出来,为下一轮高位排序做准备,由于靠近桶底的元素排名靠前,因此从桶底先捞 } } } } console.timeEnd('计数排序耗时'); return array;};
const radixSort = (array, max) => {
console.time('计数排序耗时');
const buckets = [];
let unit = 10,
base = 1;
for (let i = 0; i < max; i++, base *= 10, unit *= 10) {
for (let j = 0; j < array.length; j++) {
let index = ~~((array[j] % unit) / base); //依次过滤出个位,十位等等数字
if (buckets[index] == null) {
buckets[index] = []; //初始化桶
}
buckets[index].push(array[j]); //往不同桶里添加数据
}
let pos = 0,
value;
for (let j = 0, length = buckets.length; j < length; j++) {
if (buckets[j] != null) {
while ((value = buckets[j].shift()) != null) {
array[pos++] = value; //将不同桶里数据挨个捞出来,为下一轮高位排序做准备,由于靠近桶底的元素排名靠前,因此从桶底先捞
}
}
}
}
console.timeEnd('计数排序耗时');
return array;
};
测试const array = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];console.log('原始array:', array);const newArr = radixSort(array, 2);console.log('newArr:', newArr);// 原始 array: [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48]// 堆排序耗时: 0.064208984375ms// newArr: [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.log('原始array:', array);
const newArr = radixSort(array, 2);
console.log('newArr:', newArr);
// 原始 array: [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48]
// 堆排序耗时: 0.064208984375ms
// newArr: [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
分析动画
LSD 基数排序动图演示:
radixSort.gif
4. 复杂度对比
十大经典排序算法的 时间复杂度与空间复杂度 比较。
名称 平均 最好 最坏 空间 稳定性 排序方式
冒泡排序 O(n2) O(n) O(n2) O(1) Yes In-place
插入排序 O(n2) O(n) O(n2) O(1) Yes In-place
选择排序 O(n2) O(n2) O(n2) O(1) No In-place
归并排序 O(n log n) O(n log n) O(n log n) O(n) Yes Out-place
快速排序 O(n log n) O(n log n) O(n2) O(logn) No In-place
希尔排序 O(n log n) O(n log2 n) O(n log2 n) O(1) No In-place
堆排序 O(n log n) O(n log n) O(n log n) O(1) No In-place
桶排序 O(n + k) O(n + k) O(n2) O(n + k) Yes Out-place
计数排序 O(n + k) O(n + k) O(n + k) O(k) Yes Out-place
基数排序 O(n * k) O(n * k) O(n * k) O(n + k) Yes Out-place
名词解释:
5. 算法可视化工具
6. 系列文章
JavaScript 数据结构与算法之美 系列文章,暂时写了如下的 11 篇文章,后续还有想写的内容,再补充。
所写的内容只是数据结构与算法内容的冰山一角,如果你还想学更多的内容,推荐学习王争老师的 数据结构与算法之美。
从时间和空间复杂度、基础数据结构到排序算法,文章的内容有一定的关联性,所以阅读时推荐按顺序来阅读,效果更佳。
标题 链接
1. 时间和空间复杂度 https://github.com/biaochenxuying/blog/issues/29
2. 线性表(数组、链表、栈、队列) https://github.com/biaochenxuying/blog/issues/34
3. 实现一个前端路由,如何实现浏览器的前进与后退 ? https://github.com/biaochenxuying/blog/issues/30
4. 栈内存与堆内存 、浅拷贝与深拷贝 https://github.com/biaochenxuying/blog/issues/35
5. 递归 https://github.com/biaochenxuying/blog/issues/36
6. 非线性表(树、堆) https://github.com/biaochenxuying/blog/issues/37
7. 冒泡排序、选择排序、插入排序 https://github.com/biaochenxuying/blog/issues/39
8. 归并排序、快速排序、希尔排序、堆排序 https://github.com/biaochenxuying/blog/issues/40
9. 计数排序、桶排序、基数排序 https://github.com/biaochenxuying/blog/issues/41
10. 十大经典排序算法汇总 https://github.com/biaochenxuying/blog/issues/42
11. 强烈推荐 GitHub 上值得前端学习的数据结构与算法项目 https://github.com/biaochenxuying/blog/issues/43