2019-9-26 opencv摄像机标定与三维重构2-Pose Estimation 姿态估计

官网https://docs.opencv.org/3.4.1/d7/d53/tutorial_py_pose.html

上一节学习了摄像机标定(图像畸变校正),你可以得到摄像机矩阵,畸变系数。得到图像图案之后,我们可以利用以上信息计算姿态,或者物体在空间中的位置,比如:物体如何旋转,如何放置等。对于平面对象,我们假设Z=0,由此问题就变为摄像机在空间中是如何放置,来获得我们的图像图案。所以,如果我们知道物体在空间中如何放置,就可以在它里面绘制2D图来模拟3D效果。

现在我们的问题是,在棋盘的第一个角点绘制三维坐标(X, Y, Z 轴)。X轴蓝色,Y轴绿色,Z轴红色。Z轴应该让人感觉是垂直棋盘平面的效果。

我们先从前一节的标定结果中引入摄像机矩阵和畸变系数。

import numpy as np
import cv2 as cv
import glob
# Load previously saved data
with np.load('B.npz') as X:
    mtx, dist, _, _ = [X[i] for i in ('mtx','dist','rvecs','tvecs')]

然后用 cv.findChessboardCorners()函数获得角点,并送入draw函数绘制。draw函数还绘制3D坐标轴上的点。

def draw(img, corners, imgpts):
    corner = tuple(corners[0].ravel())
    img = cv2.line(img, corner, tuple(imgpts[0].ravel()), (255,0,0), 5)
    img = cv2.line(img, corner, tuple(imgpts[1].ravel()), (0,255,0), 5)
    img = cv2.line(img, corner, tuple(imgpts[2].ravel()), (0,0,255), 5)
    return img

和上一节例子一样,我们创建终止条件,对象点(棋盘角点的3D点)和坐标轴点。3D 空间中的坐标轴点是为了绘制坐标轴。我们绘制坐标轴的长度为3(单位就是棋盘格子大小,因为上一节我们就是以此单位来校定)。X轴从(0,0,0)绘制到(3,0,0),Y轴也是这样。Z轴是从(0,0,0) 绘制到(0,0,-3)。负值表示它是朝着摄像机方向。

criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
objp = np.zeros((6*7,3), np.float32)
objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)
axis = np.float32([[3,0,0], [0,3,0], [0,0,-3]]).reshape(-1,3)

和通常一样,我们导入图像,搜索7x6格子。如果找到对象,我们就把它优化到亚像素级。然后用cv.solvePnPRansac()计算旋转和变换。一旦得到了转换矩阵,我们就可以使用它把轴点投射到图像平面上。简单来说,我们在图像平面上找到了与3D空间中的点(3,0,0),(0,3,0),(0,0,3)相对应的点。完成之后,使用draw()函数从第一个角点开始绘制直线所有点。

以上就是所有过程。

全代码如下,我没有导入数据过程,直接从上一节代码中获得数据

import cv2 
import numpy as np
import glob
from matplotlib import pyplot as plt

# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*7,3), np.float32)
objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)

# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.

images = glob.glob('*.jpg')
for fname in images:
    img = cv2.imread(fname)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # Find the chess board corners
    ret, corners = cv2.findChessboardCorners(gray, (7,6), None)

    # If found, add object points, image points (after refining them)
    if ret == True:
        objpoints.append(objp)
        corners2 = cv2.cornerSubPix(gray,corners, (11,11), (-1,-1), criteria)
        imgpoints.append(corners)

ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)

def draw(img, corners, imgpts):
    corner = tuple(corners[0].ravel())
    img = cv2.line(img, corner, tuple(imgpts[0].ravel()), (255,0,0), 5)
    img = cv2.line(img, corner, tuple(imgpts[1].ravel()), (0,255,0), 5)
    img = cv2.line(img, corner, tuple(imgpts[2].ravel()), (0,0,255), 5)
    return img

criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
objp = np.zeros((6*7,3), np.float32)
objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)
axis = np.float32([[3,0,0], [0,3,0], [0,0,-3]]).reshape(-1,3)

for fname in glob.glob('left*.jpg'):
    img = cv2.imread(fname)
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    ret, corners = cv2.findChessboardCorners(gray, (7,6),None)
    if ret == True:
        corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
        
        # Find the rotation and translation vectors.
        ret,rvecs, tvecs = cv2.solvePnP(objp, corners2, mtx, dist)
        
        # project 3D points to image plane
        imgpts, jac = cv2.projectPoints(axis, rvecs, tvecs, mtx, dist)
        img = draw(img,corners2,imgpts)
        cv2.imshow('img',img)
        k = cv2.waitKey(0) & 0xFF
        if k == ord('s'):
            cv2.imwrite(fname[:6]+'.png', img)
            
cv2.destroyAllWindows()

按s键可以保存图片。随便找了几张贴在下面
2019-9-26 opencv摄像机标定与三维重构2-Pose Estimation 姿态估计_第1张图片
2019-9-26 opencv摄像机标定与三维重构2-Pose Estimation 姿态估计_第2张图片
2019-9-26 opencv摄像机标定与三维重构2-Pose Estimation 姿态估计_第3张图片
2019-9-26 opencv摄像机标定与三维重构2-Pose Estimation 姿态估计_第4张图片

有没有发现,每条坐标轴的长度都是3个格子的长度。如果你的空间想象能力不错,棋盘放置的姿态其实已经显示出来了。

渲染立方体

修改一下draw()函数,可以在3轴坐标基础上画一个立方体,这样更加方便观察姿态估计结果。

def draw(img, corners, imgpts):
    imgpts = np.int32(imgpts).reshape(-1,2)
    # draw ground floor in green
    img = cv2.drawContours(img, [imgpts[:4]],-1,(0,255,0),-3)
    # draw pillars in blue color
    for i,j in zip(range(4),range(4,8)):
        img = cv2.line(img, tuple(imgpts[i]), tuple(imgpts[j]),(255),3)
    # draw top layer in red color
    img = cv2.drawContours(img, [imgpts[4:]],-1,(0,0,255),3)
    return img

修改后的坐标轴点。它们是3D 空间中的一个立方体的8 个角点

axis = np.float32([[0,0,0], [0,3,0], [3,3,0], [3,0,0],
                   [0,0,-3],[0,3,-3],[3,3,-3],[3,0,-3] ])

全代码如下

import cv2 
import numpy as np
import glob
from matplotlib import pyplot as plt

# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((6*7,3), np.float32)
objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)

# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.

images = glob.glob('*.jpg')
for fname in images:
    img = cv2.imread(fname)
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    # Find the chess board corners
    ret, corners = cv2.findChessboardCorners(gray, (7,6), None)

    # If found, add object points, image points (after refining them)
    if ret == True:
        objpoints.append(objp)
        corners2 = cv2.cornerSubPix(gray,corners, (11,11), (-1,-1), criteria)
        imgpoints.append(corners)

        # Draw and display the corners
        '''
        cv2.drawChessboardCorners(img, (7,6), corners2, ret)
        cv2.imshow('img', img)
        cv2.waitKey(500)
        '''

ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)

# Load previously saved data
#with np.load('B.npz') as X:
#    mtx, dist, _, _ = [X[i] for i in ('mtx','dist','rvecs','tvecs')]

'''
def draw(img, corners, imgpts):
    corner = tuple(corners[0].ravel())
    img = cv2.line(img, corner, tuple(imgpts[0].ravel()), (255,0,0), 5)
    img = cv2.line(img, corner, tuple(imgpts[1].ravel()), (0,255,0), 5)
    img = cv2.line(img, corner, tuple(imgpts[2].ravel()), (0,0,255), 5)
    return img
'''
def draw(img, corners, imgpts):
    imgpts = np.int32(imgpts).reshape(-1,2)
    # draw ground floor in green
    img = cv2.drawContours(img, [imgpts[:4]],-1,(0,255,0),-3)
    # draw pillars in blue color
    for i,j in zip(range(4),range(4,8)):
        img = cv2.line(img, tuple(imgpts[i]), tuple(imgpts[j]),(255),3)
    # draw top layer in red color
    img = cv2.drawContours(img, [imgpts[4:]],-1,(0,0,255),3)
    return img

criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
objp = np.zeros((6*7,3), np.float32)
objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)
#axis = np.float32([[3,0,0], [0,3,0], [0,0,-3]]).reshape(-1,3)
axis = np.float32([[0,0,0], [0,3,0], [3,3,0], [3,0,0],
                   [0,0,-3],[0,3,-3],[3,3,-3],[3,0,-3] ])

for fname in glob.glob('left*.jpg'):
    img = cv2.imread(fname)
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    ret, corners = cv2.findChessboardCorners(gray, (7,6),None)
    if ret == True:
        corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
        
        # Find the rotation and translation vectors.
        ret,rvecs, tvecs = cv2.solvePnP(objp, corners2, mtx, dist)
        
        # project 3D points to image plane
        imgpts, jac = cv2.projectPoints(axis, rvecs, tvecs, mtx, dist)
        img = draw(img,corners2,imgpts)
        cv2.imshow('img',img)
        k = cv2.waitKey(0) & 0xFF
        if k == ord('s'):
            cv2.imwrite(fname[:6]+'.png', img)
            
cv2.destroyAllWindows()

运行结果如下。看看立方体更加容易理解姿态估计的效果了吧。

2019-9-26 opencv摄像机标定与三维重构2-Pose Estimation 姿态估计_第5张图片
2019-9-26 opencv摄像机标定与三维重构2-Pose Estimation 姿态估计_第6张图片
2019-9-26 opencv摄像机标定与三维重构2-Pose Estimation 姿态估计_第7张图片
2019-9-26 opencv摄像机标定与三维重构2-Pose Estimation 姿态估计_第8张图片

如果你对图形学、现实增强感兴趣的话,你可以使用OpenGL来渲染更复杂的图形。

你可能感兴趣的:(IT,opencv)