- hive-进阶版-1
数据牧马人
hivehadoop数据仓库
第6章hive内部表与外部表的区别Hive是一个基于Hadoop的数据仓库工具,用于对大规模数据集进行数据存储、查询和分析。Hive支持内部表(ManagedTable)和外部表(ExternalTable)两种表类型,它们在数据存储、管理方式和生命周期等方面存在显著区别。以下是内部表和外部表的主要区别:1.数据存储位置内部表:数据存储在Hive的默认存储目录下,通常位于HDFS(HadoopDi
- 使用 Doris 和 Iceberg
向阳1218
大数据doris
作为一种全新的开放式的数据管理架构,湖仓一体(DataLakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求,在企业的大数据体系中已经得到越来越多的应用。在过去多个版本中,ApacheDoris持续加深与数据湖的融合,当前已演进出一套成熟的湖仓一体解决方案。自0.15版本起,ApacheDoris引入Hive和Iceberg
- 使用 Doris 和 LakeSoul
向阳1218
大数据doris
作为一种全新的开放式的数据管理架构,湖仓一体(DataLakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,帮助用户更加便捷地满足各种数据处理分析的需求,在企业的大数据体系中已经得到越来越多的应用。在过去多个版本中,ApacheDoris持续加深与数据湖的融合,当前已演进出一套成熟的湖仓一体解决方案。自0.15版本起,ApacheDoris引入Hive和Iceberg
- 为什么要进行数据仓库分层?
BenBen尔
#建模方法spark大数据分布式
对数据仓库进行分层(如常见的ODS、DWD、DWS、ADS等层次)是为了解决复杂数据处理场景中的效率、可维护性、易用性问题。以下是分层的主要目的和优势:1、职责分离,逻辑解耦分层能够沉淀公共的数据模型,实现了逻辑解耦。有以下好处:减少重复开发,提升研发效率从数仓模型角度能够提升数据一致性。减少了冗余计算,高频查询或者高频开发无需使用原始数据,直接使用公共的数据模型查询或者开发即可,减少了对计算资源
- 数据仓库有哪些建模方法?
BenBen尔
#数据仓库数据仓库大数据
数据仓库的建模方法主要分为关系建模和多维建模两大类,不同方法适用于不同的业务场景和目标。以下是常见的建模方法及其特点:一、关系建模(规范化建模)基于关系型数据库的规范化理论,强调减少数据冗余,适合复杂的企业级数据仓库(EDW)。第三范式(3NF)定义:通过规范化将数据分解为多个关联表,确保每个字段仅依赖主键。优点:数据冗余低,一致性高,适合复杂事务处理。缺点:查询需要多表关联,性能较低;业务理解成
- 现代数据栈:秽土重生?——从 SAP x Databricks 看数据世界的轮回
数据库
由SAP官宣与Databricks合作想开去。现代数据栈(ModernDataStack)曾一度是数据行业最炙手可热的概念。Snowflake、Databricks、Fivetran、dbt……一众明星公司描绘出一个美好的未来:所有数据汇集到云端数据仓库,所有分析、BI和AI应用直接连接仓库数据,再无数据孤岛,数据流转自由,一切井然有序。但现实并没有这么美好。现代数据栈经历了一轮狂热,又在短短几年
- Hive高级SQL技巧及实际应用场景
小技工丨
大数据随笔sqlhive数据仓库大数据
Hive高级SQL技巧及实际应用场景引言ApacheHive是一个建立在Hadoop之上的数据仓库基础设施,它提供了一个用于查询和管理分布式存储中的大型数据集的机制。通过使用类似于SQL(称为HiveQL)的语言,Hive使得数据分析变得更加简单和高效。本文将详细探讨一些Hive高级SQL技巧,并结合实际的应用场景进行说明。HiveSQL的高级使用技巧1.窗口函数描述:窗口函数允许我们在不使用GR
- 如何设计高效的数据湖架构?
晴天彩虹雨
架构大数据数据仓库
1.引言在大数据时代,数据湖(DataLake)逐渐成为企业存储和处理海量数据的重要基础设施。相比于传统数据仓库,数据湖能够支持结构化、半结构化和非结构化数据,同时提供更灵活的存储与计算能力。然而,如何合理设计数据湖架构,优化存储策略、Schema演进以及数据生命周期管理,是数据架构师必须深入思考的问题。本篇文章将深入探讨数据湖架构的设计方法,结合Hudi、Iceberg、DeltaLake等技术
- 初识开源云原生数仓Databend
开源项目精选
云原生
Databend是一款开源的数据仓库产品,主要定位于OLAP场景,采用云原生架构理念(可对比snowflake),有非常好的扩展性、同时具备低成本、高性能的优势,兼容MySQL协议。Stars数8,245Forks数765主要特点针对对象存储平台进行优化的云原生架构。符合SQL:2011标准,支持复杂查询和数据版本回溯(时间旅行)功能。与流行的商业智能(BI)、提取、转换和加载(ETL)以及数据科
- 一文理清概念:数据中台(DMP)-数据仓库(DW)-数据湖(DL)-湖仓一体-数据治理(DG)
Debug_Snail
HadoopBigDataDataScience数据仓库大数据数据中台数据湖数据治理
数据仓库、数据中台、数据湖、湖仓一体是数据管理和分析领域的重要概念,它们在功能、架构和应用场景上各有特点,同时也在演进中相互关联和补充。以下是对它们的定义和关系的详细解析:1.核心概念(1)数据仓库(DataWarehouse,DW)定义:一种面向主题的、集成的、稳定的数据存储系统,用于支持企业决策分析(如BI、报表)。数据通常经过ETL(抽取、转换、加载)处理,以结构化形式存储,采用Schema
- doris:阿里云 MaxCompute
向阳1218
大数据doris
MaxCompute是阿里云上的企业级SaaS(SoftwareasaService)模式云数据仓库。什么是MaxCompute连接MaxCompute示例--1.创建Catalog。CREATECATALOGmcPROPERTIES("type"="max_compute","mc.default.project"="xxx","mc.access_key"="xxxx","mc.secret_
- 使用Activeloop Deep Lake构建深度学习数据仓库与向量存储
dgay_hua
深度学习人工智能python
技术背景介绍随着深度学习技术的发展,数据的存储与管理成为了一个重要的问题。尤其是对于需要处理大量数据的应用,例如自然语言处理和图像识别,传统的数据存储方式已经无法满足需求。ActiveloopDeepLake是专为深度学习设计的数据仓库,可以作为向量存储使用,支持多模态数据的存储和处理,并且可以直接用于细调大型语言模型(LLMs)。此外,它还提供自动版本控制,无需依赖其他服务,兼容主要云服务提供商
- 数据湖架构与实时数仓实践:Hudi、Iceberg、Kafka + Flink + Spark
晴天彩虹雨
架构kafkaflink数据仓库
1.引言:数据湖与数据仓库的融合趋势在大数据时代,传统的数据仓库(DataWarehouse,DW)因其强一致性和高效查询能力,一直是企业数据分析的核心。然而,随着数据量和数据类型的爆炸式增长,传统数据仓库的存储成本和数据管理难度逐渐增加。为了解决这些问题,数据湖(DataLake)概念应运而生。数据湖能够存储原始数据,支持半结构化和非结构化数据,提供更灵活的计算框架,但其缺乏事务管理和数据一致性
- 什么是数据库中的宽表?
見贤思齊
数据分析数据库
数据库中的宽表(WideTable)是指一种包含大量列的表结构设计,通常通过将多个业务相关的数据字段(甚至来自不同表的字段)合并到一张表中,以减少多表关联查询的需求。宽表常见于数据仓库、OLAP(联机分析处理)系统或大数据场景,其核心目标是优化查询性能,尤其是在需要频繁进行复杂分析或生成报表的场景中。一、宽表的核心特点1.列数多宽表可能包含数十甚至数百列,涵盖多个维度和指标(例如订单信息、客户信息
- 【数据仓库与数据挖掘基础】第一章 概论/基础知识
精神病不行计算机不上班
数据仓库与数据挖掘基础数据挖掘数据仓库
知识点复习:事务(关于事务的一些知识点可以点这里)一、数据仓库的一些基本的知识1.从数据库到数据仓库1.1数据库用于事务处理1.1.1定义:事务处理是指对数据库中数据的操作,这些操作通常包括插入、更新、删除和查询等。事务处理的核心是确保数据的一致性和完整性。事务的定义:事务是数据库操作的基本单位,包含一组逻辑上相关的操作。事务要么全部成功,要么全部失败。ACID特性:原子性(Atomicity):
- 云数据库是什么数据库?
云服务器数据库
云数据库,简单来说,是一种部署在云计算环境中的数据库服务。它借助云计算的强大资源,将数据库管理系统以服务的形式提供给用户,用户无需在本地自行搭建复杂的硬件和软件环境,通过互联网就能便捷地使用数据库功能。这就像是把原本需要在自家搭建、维护的“数据仓库”搬到了云端的“大型仓储中心”,由专业团队负责管理和维护。与传统数据库相比,云数据库有着诸多明显差异。传统数据库往往需要用户自行购置服务器、存储设备等硬
- Kimball维度模型之数据仓库灵魂总线架构
ByteCodeLabs
维度数据仓库设计数据仓库架构
目录一总线架构(BusArchitecture)1总线矩阵(BusMatrix)2Mapping文档二一致性维度(ConformedDimension)三一致性事实(ConformedFact)在数据仓库领域,深刻理解基本概念是确立强大数据管理体系的关键。数据仓库作为一个庞大而复杂的系统,其核心概念涉及多维体系结构、总线架构等关键要素。首要的是理解数据仓库的架构,例如Multidimensiona
- 湖仓一体化及冷、热、实时三级存储
麦当当MDD
数据仓库Spark大数据数据库数据仓库数据库架构
一、湖仓一体化(Lakehouse)湖仓一体化(Lakehouse)是数据湖(DataLake)与数据仓库(DataWarehouse)的结合,旨在解决传统数据架构中数据孤岛、存储冗余、计算性能不足等问题。其核心思想是兼顾数据湖的存储灵活性和数据仓库的管理与计算能力,使得结构化、半结构化、非结构化数据能够在同一存储系统中高效管理和分析。二、为什么需要湖仓一体?数据湖的缺陷:缺乏强Schema,查询
- 深入理解Kettle:ETL工具的学习与实践
未知方程 无解
本文还有配套的精品资源,点击获取简介:Kettle(Spoon)是Pentaho公司开发的开源ETL工具,用于数据整合和数据仓库建设。本学习笔记着重于Kettle的核心——转换引擎,详细探讨其数据处理的各个步骤,包括数据的输入、转换、输出以及工作原理,提供了一系列的学习资源和实践操作指南,旨在帮助学习者深入理解并掌握Kettle的转换引擎,从而提升数据处理能力。1.Kettle(Spoon)简介与
- 探索数据仓库自动化:ETL流程设计与实践
Echo_Wish
大数据高阶实战秘籍数据仓库自动化etl
探索数据仓库自动化:ETL流程设计与实践在大数据时代,数据仓库已成为企业数据管理和决策支持的核心工具。如何高效地提取、转换和加载数据(ETL),是数据仓库建设中的重要环节。本文将围绕数据仓库自动化的ETL流程设计展开,结合实际代码示例,探讨如何构建高效、稳定和可扩展的ETL解决方案。什么是ETL?ETL(Extract,Transform,Load)是指数据抽取、转换和加载,是数据仓库建设的重要步
- 基于hive的电信离线用户的行为分析系统
赵谨言
论文经验分享毕业设计
标题:基于hive的电信离线用户的行为分析系统内容:1.摘要随着电信行业的快速发展,用户行为数据呈现出海量、复杂的特点。为了深入了解用户行为模式,提升电信服务质量和精准营销能力,本研究旨在构建基于Hive的电信离线用户行为分析系统。通过收集电信用户的通话记录、上网行为、短信使用等多源数据,利用Hive数据仓库工具进行数据存储和处理,采用数据挖掘和机器学习算法对用户行为进行分析。实验结果表明,该系统
- 阿里云MaxCompute面试题汇总及参考答案
大模型大数据攻城狮
阿里云odps云计算机器学习大数据面试大数据面经增量数据
目录简述MaxCompute的核心功能及适用场景,与传统数据仓库的区别解释MaxCompute分层架构设计原则,与传统数仓分层有何异同MaxCompute的存储架构如何实现高可用与扩展性解析伏羲(Fuxi)分布式调度系统工作原理盘古(Pangu)分布式存储系统数据分片策略计算与存储分离架构的资源弹性扩展方案解释MaxCompute多租户资源隔离实现机制容错机制设计:Worker节点故障时的数据恢复
- 国产化替代 | 星环科技TDH替代IBM数仓,助力城商行构建湖仓一体平台
ibm
城商行构建湖仓一体平台|TDH替代IBM数仓IBM的数仓NetezzaEOL是2023年,数仓Netezza生命周期结束了。数仓产品停止提供支持和更新,不再为该产品提供修复漏洞或功能改进的服务。某城市商业银行在此背景下,启动数据仓库系统升级项目,将数据仓库从IBMNetezza迁移到星环科技大数据基础平台TDH,不但成功实现了数据仓库的国产化替代,还建设了新一代的湖仓一体平台,为银行业务发展提供新
- 《数据仓库》读书笔记:第11章 非结构化数据和数据仓库
search-lemon
数据仓库数据仓库
该系列博文为《数据仓库BuildingtheDataWarehouse》一书的读书笔记,笔者将书中重点内容进行概括总结。大致保留书中结构,一部分根据自己的理解进行调整。如发现问题,欢迎批评指正。章节博文1《数据仓库》读书笔记:第1章决策支持系统的发展2《数据仓库》读书笔记:第2章数据仓库环境3《数据仓库》读书笔记:第3章设计数据仓库4《数据仓库》读书笔记:第4章数据仓库中的粒度5《数据仓库》读书笔
- 稳定运行的以Redshift数据仓库为数据源和目标的ETL性能变差时提高性能方法和步骤
weixin_30777913
数据仓库云计算
当以AmazonRedshift数据仓库为数据源和目标的ETL(Extract,Transform,Load)性能变差时,可能涉及多个方面的优化措施。提升RedshiftETL性能的关键在于多个方面的综合优化。你需要定期监控查询执行情况、调整ETL作业的执行计划、优化数据模型、合理分配资源以及在必要时调整集群配置。通过不断调整和优化这些方面,可以显著提高ETL作业的性能,确保系统稳定、高效运行。以
- 【自学笔记】大数据基础知识点总览-持续更新
Long_poem
笔记大数据
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录大数据基础知识点总览1.大数据概述2.大数据处理技术3.数据仓库与数据挖掘4.大数据分析与可视化5.大数据平台与架构6.大数据安全与隐私总结大数据基础知识点总览1.大数据概述定义:大数据是指数据量巨大、类型多样、处理速度快的数据集合。特征:4V(Volume、Velocity、Variety、Veracity)描述了大数据的主
- Airflow和PySPARK实现带多组参数和标签的Amazon Redshift数据仓库批量数据导出程序
weixin_30777913
pythonspark云计算
设计一个基于多个带标签SQL模板作为配置文件和多组参数的PySPARK代码程序,实现根据不同的输入参数,用Airflow进行调度,自动批量地将AmazonRedshift数据仓库的数据导出为Parquet、CSV和Excel文件到S3上,标签和多个参数(以“_”分割)为组成导出数据文件名,文件已经存在则覆盖原始文件。PySpark程序需要异常处理,输出带时间戳和每个运行批次和每个导出文件作业运行状
- 【Apache Paimon】-- 13 -- 利用 paimon-flink-action 同步 mysql 表数据
oo寻梦in记
ApachePaimonapacheflinkmysqlapachepaimon
利用PaimonSchemaEvolution核心特性同步变更的mysql表结构和数据1、背景信息在Paimon诞生以前,若mysql/pg等数据源的表结构发生变化时,我们有几种处理方式(1)人工通知(比如常规的使用邮件),然后运维人员手动同步到数据仓库中(2)使用flink消费DDLbinlog,然后自动更新Hive的外部表和内部表schema那么现在,有了Paimon,我们可以利用其特性,自动
- 数据整合平台Airbyte中的Shopify连接器使用指南
bavDHAUO
python
技术背景介绍Airbyte是一种专门用于ELT数据集成的平台,支持从API、数据库和文件到数据仓库和数据湖的管道搭建。其拥有最大规模的ELT连接器目录,支持众多的数据仓库和数据库。本文将介绍如何使用Airbyte的Shopify连接器加载Shopify对象作为文档。核心原理解析Airbyte的Shopify连接器作为一个文档加载器,通过API将Shopify的订单、产品等对象加载为文档。用户可以通
- 开源 数据仓库_使用这些开源工具进行数据仓库
cumi7754
数据仓库大数据pythonjava编程语言
开源数据仓库bySimonSpäti西蒙·斯派蒂(SimonSpäti)使用这些开源工具进行数据仓库(Usetheseopen-sourcetoolsforDataWarehousing)Thesedays,everyonetalksaboutopen-sourcesoftware.However,thisisstillnotcommonintheDataWarehousing(DWH)field
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息