pytorch模型保存格式

pytorch模型保存格式

对着手写数字识别实例讲讲pytorch模型保存的格式。首先讲讲保存模型或权重参数的后缀,pytorch保存数据的格式为.t7文件或者.pth文件,或者.pkl格式,t7文件是沿用torch7中读取模型权重的方式。而pth文件是python中存储文件的常用格式。而在keras中则是使用.h5文件
1、pytorch保存和加载模型以及权重参数(强烈推荐使用这种)
1.1 首先新建model.py模块
将模型单独新建一个模块

from torch import nn

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        # 使用序列工具快速构建
        self.conv1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, padding=2),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(2))
        self.conv2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(2))
        self.fc = nn.Linear(7 * 7 * 32, 10) 
    def forward(self, x):
        out = self.conv1(x)
        out = self.conv2(out)
        out = out.view(out.size(0), -1)  # reshape
        out = self.fc(out)
        return out

1.2 新建一个train.py模块
保存模型和权重参数的格式为:

torch.save(the_model.state_dict(), PATH)

具体的实例如下所示:

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
from torchvision import datasets, transforms
from torch.autograd import Variable
import os
batch_size = 64
learning_rate = 0.001
# 将数据处理成Variable, 如果有GPU, 可以转成cuda形式
def get_variable(x):
    x = Variable(x)
    return x.cuda() if torch.cuda.is_available() else x
train_dataset = datasets.MNIST(
    root='./mnist/',
    train=True,
    transform=transforms.ToTensor(),
    download=True)
transforms = transforms.Compose([transforms.ToTensor(),
                                 transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])])
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True)
images, labels = next(iter(train_loader))
img = torchvision.utils.make_grid(images)
img = img.numpy().transpose(1, 2, 0)
print(labels)
plt.imshow(img)
plt.show()
# 两层卷积
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        # 使用序列工具快速构建
        self.conv1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, padding=2),  
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(2))
        self.conv2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(2))
        self.fc = nn.Linear(7 * 7 * 32, 10)  
    def forward(self, x):
        out = self.conv1(x)
        out = self.conv2(out)
        out = out.view(out.size(0), -1)  # reshape
        out = self.fc(out)
        return out
cnn = CNN()
if torch.cuda.is_available():
    cnn = cnn.cuda()
# 选择损失函数和优化方法
loss_func = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(cnn.parameters(), lr=learning_rate)
print(cnn)
num_epochs = 2
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = get_variable(images)
        labels = get_variable(labels)  
        outputs = cnn(images)
        optimizer.zero_grad()  
        loss = loss_func(outputs, labels)
        loss.backward()  # 反向传播,自动计算每个节点的锑度至
        optimizer.step()
        if (i + 1) % 100 == 0:
            print('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f'
                  % (epoch + 1, num_epochs, i + 1, len(train_dataset) // batch_size, loss.item()))
# Save the Trained Model
torch.save(cnn.state_dict(), 'cnn.pkl')

1.3 新建一个test.py模块
加载模型权重的格式为:

the_model.load_state_dict(torch.load(PATH))*

具体的测试实例如下所示:

import torch
import torchvision
import matplotlib.pyplot as plt
import torchvision.datasets as normal_datasets
import torchvision.transforms as transforms
from torch.autograd import Variable
from mymodel import CNN
# 见数据加载器和batch
test_dataset = normal_datasets.MNIST(root='./mnist/',
                                     train=False,                                    transform=transforms.ToTensor())
data_loader_test=torch.utils.data.DataLoader(dataset=test_dataset, batch_size=4,   shuffle=True)
model = CNN()
model.load_state_dict(torch.load('cnn.pkl'))
X_test, y_test = next(iter(data_loader_test))
inputs = Variable(X_test)
pred = model(inputs)
_, pred = torch.max(pred, 1)
print("Predict Label is:", [i for i in pred.data])
print("Real Label is :", [i for i in y_test])
img = torchvision.utils.make_grid(X_test)
img = img.numpy().transpose(1, 2, 0)
plt.imshow(img)
plt.show()

2、pytorch保存和加载整个模型(不推荐)
2.1 model.py模块同以上1.1
2.2 新建一个train.py模块
保存整个模型的格式为:

torch.save(the_model, PATH)

训练实例如下所示:

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
from torchvision import datasets, transforms
from torch.autograd import Variable
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
batch_size = 64
learning_rate = 0.001
# 将数据处理成Variable, 如果有GPU, 可以转成cuda形式
def get_variable(x):
    x = Variable(x)
    return x.cuda() if torch.cuda.is_available() else x
train_dataset = datasets.MNIST(
    root='./mnist/',
    train=True,
    transform=transforms.ToTensor(),
    download=True)
transforms = transforms.Compose([transforms.ToTensor(),
                                 transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])])
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True)
images, labels = next(iter(train_loader))
img = torchvision.utils.make_grid(images)
img = img.numpy().transpose(1, 2, 0)
print(labels)
plt.imshow(img)
plt.show()
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        # 使用序列工具快速构建
        self.conv1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, padding=2),  
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.MaxPool2d(2))
        self.conv2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(2))
        self.fc = nn.Linear(7 * 7 * 32, 10)  
    def forward(self, x):
        out = self.conv1(x)
        out = self.conv2(out)
        out = out.view(out.size(0), -1)  # reshape
        out = self.fc(out)
        return out
cnn = CNN()
if torch.cuda.is_available():
    cnn = cnn.cuda()
loss_func = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(cnn.parameters(), lr=learning_rate)
print(cnn)
num_epochs = 2
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = get_variable(images)
        labels = get_variable(labels)  
        outputs = cnn(images)
       optimizer.zero_grad()  
        loss = loss_func(outputs, labels)
        loss.backward()  # 反向传播,自动计算每个节点的锑度至
        optimizer.step()
        if (i + 1) % 100 == 0:
            print('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f'
                  % (epoch + 1, num_epochs, i + 1, len(train_dataset) // batch_size, loss.item()))
# Save the Trained Model
 torch.save(cnn, 'cnn.pth')

2.3 新建一个test.py模块
加载整个模型的格式为:

model=torch.load(PATH)
import torch
import torchvision
import matplotlib.pyplot as plt
import torchvision.datasets as normal_datasets
import torchvision.transforms as transforms
from torch.autograd import Variable
# 见数据加载器和batch
test_dataset = normal_datasets.MNIST(root='./mnist/',
                                     train=False,
                                   transform=transforms.ToTensor())
data_loader_test=torch.utils.data.DataLoader(dataset=test_dataset,
                                             batch_size=4,
                                             shuffle=True)
model=torch.load('cnn.pth')
X_test, y_test = next(iter(data_loader_test))
inputs = Variable(X_test)
pred = model(inputs)
_, pred = torch.max(pred, 1)
print("Predict Label is:", [i for i in pred.data])
print("Real Label is :", [i for i in y_test])
img = torchvision.utils.make_grid(X_test)
img = img.numpy().transpose(1, 2, 0)
plt.imshow(img)
plt.show()

你可能感兴趣的:(pytorch模型保存格式)