- Py-spy:优秀的 Python 程序性能监控、分析器
py-spy是用于Python程序的性能监控、分析器。它使你可以直观地看到Python程序花费的时间,而无需重新启动程序或以任何方式修改代码。py-spy的开销非常低:为了最大化提高速度,它是用Rust编写的,并且与配置的Python程序不在同一进程中运行。这意味着py-spy可以安全地用于生产环境的Python程序。py-spy可在Linux,OSX,Windows和FreeBSD上运行,并支持
- PPP 点到点协议
太阁闫辉
一、PPP协议介绍PPP协议包含LCPPAPCHAPNCP(IPV4CPIPV6CPIPXCP)等工作在链路层支持链路级的AAA认证。Authentication认证:出示凭证主认证被认证如锁是主认证,钥匙就是被认证被认证方要向主认证方出示用户名密码,主认证方确定没有问题在把链路开启。Authorization授权:认证通过后,我需要判断你能使用多少资源Accounting审计:监控接收什么样流量
- 【软件系统架构】系列七:系统性能——网络性能深入解析
目录一、什么是网络性能?网络性能的核心指标二、网络性能影响因素1.物理层因素2.链路质量3.网络设备性能4.协议栈影响5.应用层特性三、网络性能测试指标详解网络性能测试方法四、网络性能测试方法1.链路测试2.路径分析3.协议级分析4.大规模监控五、网络性能优化策略1.带宽优化2.延迟与抖动优化3.丢包率控制4.TCP调优5.DNS优化六、网络性能瓶颈诊断流程(实战推荐)七、不同网络环境的性能关注重
- 5.k8s:helm包管理器,prometheus监控,elk,k8s可视化
鹏哥哥啊Aaaa
运维kubernetes容器云原生
目录一、Helm包管理器1.什么是Helm2.安装Helm(3)Helm常用命令(4)目录结构(5)使用Helm完成redis主从搭建二、Prometheus集群监控1.监控方案2.Prometheus监控k8s三、ELK日志搜集1.elk流程2.配置elk(1)配置es(2)配置logstash(3)配置filebeat,kibana3.kibana使用和日志检索四、k8s可视化管理1.Dash
- 深度学习模型开发部署全流程:以YOLOv11目标检测任务为例
你喜欢喝可乐吗?
deeplearningdeploy深度学习YOLO目标检测
深度学习模型开发部署全流程:以YOLOv11目标检测任务为例深度学习模型从开发到部署的完整流程包含需求分析、数据准备、模型训练、模型优化、模型测试和部署运行六大核心环节。YOLOv11作为新一代目标检测模型,不仅延续了YOLO系列的高效实时性能,还在检测精度和泛化能力上取得显著突破,使其成为工业质检、安防监控、自动驾驶等领域的理想选择。本文将详细阐述这一完整流程,并结合YOLOv11的具体实现,提
- 众趣SDK重磅升级:空间物联IOT新视界,赋能实景三维场景深度应用
zhongqu_3dnest
物联网3d点云处理人工智能计算机视觉点云扫描
近日,空间数字孪生云服务行业领导者—众趣科技宣布旗下核心产品云服务平台QverseSDK迎来里程碑式升级!本次升级聚焦行业前沿需求,重磅推出IoT设备监控系统、iframe跨平台页面无缝集成、BI数据智能三大解决方案,旨在将三维空间计算能力转化为更强大、更易用的生产力工具,为企业用户和开发者构建下一代空间数字化应用提供坚实底座。一、IoT空间物联,让设备运行尽在掌控痛点解决:告别传统分散的设备管理
- aocache:AOCache 新增功能深度解析:从性能监控到灵活配置的全方位升级
10km
aocachejavajavaaocache性能分析
最近对aocache进行了重要升级,最新版本0.6.0增加了几项新功能:性能分析日志,AOCache性能分析工具,切入点自定义配置,全局配置,本文详细说明这几项目新功能的作用和使用方式。一、性能分析日志需求背景对于哪些方法适合使用aocache注解提高性能,开始我是凭经验和直觉来判断的。但是对于下面这个方法,凭直觉你觉得用方法缓存能提高性能么?publicStringnext(Stringexpr
- Python日志终极指南:深入探索logging日志管理模块
c01dkit
pythonpython开发语言
在任何一个严谨的软件开发项目中,日志(Logging)都是不可或缺的一环。它不仅是调试代码的利器,更是线上问题追踪、性能分析和数据监控的重要依据。相比于随处可见的print()语句,Python内置的logging模块提供了更为强大、灵活且标准化的解决方案。[1][2]这篇博客将带你由浅入深,全面掌握logging模块的使用,从基础配置到高级技巧,再到企业级项目的最佳实践。一、告别print():
- AI大模型训练的云原生实践:如何用Kubernetes指挥千卡集群?
当你的团队还在手动拼装显卡集群时,聪明人早已教会Kubernetes自动调度千卡。就像交响乐团需要指挥家,万级GPU需要云原生调度艺术。深夜的机房,硬件工程师老张盯着监控屏上跳动的红色警报——手工组装的千卡集群再次因单点故障崩溃。而隔壁团队通过Kubernetes调度的百卡集群,训练效率竟高出他们47%。这不是魔法,而是云原生调度的降维打击。一、千卡训练:为什么传统方法行不通?想象指挥没有乐谱的千
- PAM认证相关的日志信息
Yana.com
PAMlinux
目录**1.主要日志文件****(1)`/var/log/secure`(RHEL/CentOS/Fedora)****(2)`/var/log/auth.log`(Debian/Ubuntu)****(3)`/var/log/sssd/sssd_pam.log`(SSSD相关认证)****(4)`/var/log/audit/audit.log`(SELinux相关)****2.如何实时监控PA
- 性能优化实践:Modbus 在高并发场景下的吞吐量提升(一)
一、引言**在工业自动化领域,Modbus协议凭借其简单易用、开放性高以及广泛的设备支持等特点,成为了设备间通信的重要标准之一。自1979年由Modicon公司(现为施耐德电气)首次开发以来,Modbus协议历经多年发展,已广泛应用于各类工业场景,从工厂自动化生产线到智能建筑控制系统,从能源管理系统到远程监控平台,Modbus协议无处不在,连接着各种不同类型的设备,实现数据的交换与控制指令的传递。
- 达梦分布式集群DPC_DPC线程深度解析_yxy
yxy___
达梦分布式集群分布式线程DPC
达梦分布式集群DPC_DPC线程深度解析1.DPC专用线程体系1.1DPC线程池分类1.1.1底层公共线程池1.1.2上层专用线程池1.2线程管理模式1.2.1生产者-消费者模式1.2.2领导者跟随者模式2.DPC线程相关视图2.1THREADS2.2DPC_STASK_THRD2.3关键列解释3.DPC线程管理监控3.1sql卡顿,找出关键线程分析3.2完整sql执行示例1.DPC专用线程体系文
- 聚众识别漏检难题?陌讯多尺度检测实测提升 92%
一、开篇痛点:复杂场景下的聚众识别困境在安防监控、大型赛事等场景中,实时聚众识别是保障公共安全的核心技术。但传统视觉算法常面临三大难题:一是密集人群重叠导致小目标漏检率超30%,二是光照变化(如夜间逆光)引发误报率飙升,三是复杂背景干扰下实时性不足(FPS<15)。某景区监控项目曾反馈,开源模型在节假日人流高峰时,因漏检导致预警延迟达20秒,存在严重安全隐患。这些问题的根源在于传统算法的局限性:单
- 复杂场景检测失效?陌讯多模态算法在千万级监控网的落地实战
2501_92473061
算法视觉检测安全计算机视觉
开篇痛点:安防监控的检测困境"明明人就在画面里,系统却毫无反应!"——这是某智慧园区安防负责人的吐槽。传统目标检测模型在安防监控场景面临三大死穴:漏报:夜间、遮挡场景下召回率骤降(实测ResNet50漏报率>40%)误报:树叶晃动、光影变化引发的误报占比超35%延迟:1080P视频流检测延迟普遍>100ms,难以满足实时响应需求技术解析:陌讯算法的三阶优化架构陌讯视觉算法采用多模态特征金字塔(MM
- 复杂场景检测老翻车?陌讯算法实测提升 40%
2501_92453489
算法视觉计算机视觉视觉检测
在工业质检、安防监控等计算机视觉落地场景中,工程师常面临棘手问题:传统算法在光照突变、目标遮挡等复杂环境下,漏检率高达20%以上,泛化能力不足成为项目落地的最大阻碍。而陌讯AI视觉算法通过架构创新,正在重新定义复杂场景下的检测精度标准。技术解析:从单模态到多模态的跨越传统目标检测模型多依赖单一RGB图像输入,在特征提取阶段容易受环境干扰。以经典的FasterR-CNN为例,其区域提议网络(RPN)
- lesson18:Python函数的闭包与装饰器(难)
你的电影很有趣
python开发语言
目录引言闭包:函数式编程的"状态容器"一、闭包的本质与定义二、闭包的三大形成条件三、闭包的工作原理:变量的“持久化”四、闭包的核心应用场景五、闭包的注意事项六、闭包与装饰器的关系装饰器:基于闭包的功能增强工具一.装饰器的定义与作用二.装饰器的实现原理(基于闭包)三、装饰器进阶:灵活扩展功能1.带参数的装饰器2.保留函数元信息3.类装饰器与装饰器嵌套四、装饰器实战案例案例一:时间开销计算(性能监控)
- 用Flink实现的一个实时订单对账功能, Flink的双流实时对账
1.为什么业务订单数据不用Mysql之类的强事务性数据库监控反而用Flink的实时?一般这种涉及到订单的数据流都要用mysql监控实现,但是鉴于减少mysql的数据库压力和提高更实时性,可以考虑用Flink实时的数据流做实时的参考2.如何处理乱序数据?使用watermark水位保证第一层数据延迟.PS:这里的水位不能设置太长延迟使用processfuntion更加灵活的处理迟到数据,设置一个定时器
- Qt/C++音视频开发22-通用GPU显示
feiyangqingyun
Qt/C++音视频开发Qt视频监控Qt音视频Qt硬解码
一、前言采用GPU来绘制实时视频一直以来都是个难点,如果是安防行业的做视频监控开发这块的人员,这个坎必须迈过去,本人一直从事的是安防行业的电子围栏这个相当小众的细分市场的开发,视频监控这块仅仅是周边技术玩一玩探讨一下,关于GPU绘制这块着实走了不少的弯路。之前用ffmpeg解码的时候,已经做了硬解码的处理,比如支持qsv、dxva2、d3d11va等方式进行硬解码处理,但是当时解码出来以后,还是重
- 时序数据库选型全指南:为什么越来越多企业选择IoTDB?
Loving_enjoy
计算机学科论文创新点机器学习facebook课程设计经验分享
>在工业物联网爆发式增长的今天,一台风力发电机每秒产生200+数据点,一座智慧工厂每天新增10亿级数据记录——传统数据库已无法承受时序数据的洪流。###时序数据:数字时代的脉搏时序数据(Time-SeriesData)是以时间戳为索引的连续数据流,广泛存在于物联网设备监控、金融交易记录、应用性能监测等场景。这类数据具有三大特性:-**海量性**:单个设备每秒可产生多条数据-**时效性**:新数据价
- 微算法科技研究量子视觉计算,利用量子力学原理提升传统计算机视觉任务的性能
计算机视觉,作为人工智能领域的一个重要分支,致力于模拟人类视觉系统对图像或视频等视觉数据的理解与分析能力。它涵盖了图像识别、目标检测、图像分割等一系列复杂任务,广泛应用于自动驾驶、医疗影像分析、安防监控等多个领域。然而,随着数据规模的不断膨胀和任务复杂度的日益提升,传统计算机视觉算法在处理大规模、高维度数据时遇到了性能瓶颈。微算法科技(NASDAQ:MLGO)研究量子视觉计算,探索量子计算与经典卷
- 如何使用Google AdSense实现H5小游戏变现(二)
Louisa的工作日记
上一篇内容主要介绍了H5小游戏的市场情况洞察、GoogleAdSense介绍、收入核心指标,本篇文章将介绍如何改善展示次数、eCPM,以及如何使用GA来优化网站质量。01.如何改善展示次数1、网站DAU网站DAU和你的渠道息息相关,这里作为H5小游戏网站常常容易遇到的问题:服务器承载压力过大崩溃。需要时刻监控服务器情况,海外推荐使用亚马逊相关服务,国内服务提供商均存在不稳定情况。此外,必须支持ht
- 传统检测响应慢?陌讯多模态引擎提速90+FPS实战
2501_92473147
算法计算机视觉目标检测
开篇痛点:实时目标检测在安防监控中的核心挑战在安防监控领域,实时目标检测是保障公共安全的关键技术。然而,传统算法如YOLOv5或开源框架MMDetection常面临两大痛点:误报率高(复杂光照或遮挡场景下检测不稳定)和响应延迟(高分辨率视频流处理FPS低于30)。实测数据显示,城市交通监控系统误报率达15%,导致安保资源浪费;客户反馈表明,延迟超100ms时,目标跟踪可能失效。这些问题源于算法泛化
- 反光衣识别漏检率 30%?陌讯多尺度模型实测优化
在建筑工地、交通指挥等场景中,反光衣是保障作业人员安全的重要装备,对其进行精准识别是智能监控系统的核心功能之一。但传统视觉算法在实际应用中却屡屡碰壁:强光下反光衣易与背景混淆、远距离小目标漏检率高达30%、复杂场景下模型泛化能力不足[实测数据来源:某智慧工地项目2024年Q1日志]。这些问题直接导致安全监控系统预警滞后,给安全生产埋下隐患。一、技术解析:反光衣识别的核心难点与陌讯算法创新反光衣识别
- Python 爬虫实战:视频平台播放量实时监控(含反爬对抗与数据趋势预测)
西攻城狮北
python爬虫音视频
一、引言在数字内容蓬勃发展的当下,视频平台的播放量数据已成为内容创作者、营销人员以及行业分析师手中极为关键的情报资源。它不仅能够实时反映内容的受欢迎程度,更能在竞争分析、营销策略制定以及内容优化等方面发挥不可估量的作用。然而,视频平台为了保护自身数据和用户隐私,往往会设置一系列反爬虫机制,对数据爬取行为进行限制。这就向我们发起了挑战:如何巧妙地突破这些限制,同时精准地捕捉并预测播放量的动态变化趋势
- redis集群之Sentinel哨兵高可用
会飞的爱迪生
redisredissentinelbootstrap
Sentinel是官网推荐的高可用(HA)解决方案,可以实现redis的高可用,即主挂了从代替主工作,在一台单独的服务器上运行多个sentinel,去监控其他服务器上的redismaster-slave状态(可以监控多个master-slave),当发现master宕机后sentinel会在slave中选举并启动新的master。至少需要3台redis才能建立起基于哨兵的reids集群。一、通过s
- GoView 强势入驻 GitCode:拖拽低代码,打造高颜值数据大屏
GitCode 代码君
gitcode低代码开源
信息可视化时代,数字大屏日益成为展示核心KPI、运营状态、监控预警的主流形式。然而,用传统方式开发一个定制化数字大屏需要解决多少问题?1.繁复的数据源集成,各种不同的协议和格式……2.让人晕头转向的可视化逻辑,调动艰难的样式、布局、动画,和往往难以统一的风格3.牵一发而动全身的代码结构,就想换个主题色结果开启的全局CSS大冒险……现在,一个开源项目即可搞定上述问题——拖拽式低代码数字可视化平台Go
- 基于Python的智能公示信息监控爬虫系统开发实战
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言音视频搜索引擎scrapy
摘要本文详细介绍了如何使用Python构建一个高效的公示信息监控爬虫系统。系统采用最新技术栈,包括异步爬取、智能解析、反反爬策略等,能够自动监控各类政府网站、企业公示平台的更新信息。文章从系统设计到具体实现,提供了完整的代码示例和详细的技术解析,帮助读者掌握大规模公示信息采集的核心技术。关键词:Python爬虫、公示监控、信息采集、异步爬取、智能解析1.引言在数字化时代,各类公示信息(如政府采购、
- 目标检测(object detection)
加油吧zkf
目标检测目标检测人工智能计算机视觉
目标检测作为计算机视觉的核心技术,在自动驾驶、安防监控、医疗影像等领域发挥着不可替代的作用。本文将系统讲解目标检测的概念、原理、主流模型、常见数据集及应用场景,帮助读者构建对这一技术的完整认知。一、目标检测的核心概念目标检测(ObjectDetection)是指在图像或视频中自动定位并识别出所有感兴趣的目标的技术。它需要解决两个核心问题:分类(Classification):确定图像中每个目标的类
- 微算法科技的前沿探索:量子机器学习算法在视觉任务中的革新应用
MicroTech2025
量子计算算法
在信息技术飞速发展的今天,计算机视觉作为人工智能领域的重要分支,正逐步渗透到我们生活的方方面面。从自动驾驶到人脸识别,从医疗影像分析到安防监控,计算机视觉技术展现了巨大的应用潜力。然而,随着视觉任务复杂度的不断提升,传统机器学习算法在处理大规模、高维度数据时遇到了计算瓶颈。在此背景下,量子计算作为一种颠覆性的计算模式,以其独特的并行处理能力和指数级增长的计算空间,为解决这一难题提供了新的思路。微算
- UDP服务器的优缺点都包含哪些?
wanhengidc
udp服务器网络协议
UDP协议不需要像TCP协议那样进行复杂的连接建立与拆除过程,在进行传输数据信息的过程中,应用层将数据交给UDP层,UDP层直接加上首部就发往网络层,极大地减少了处理时间和资源消耗。例如在一些简单的网络监控程序中,只是定期发送一些状态信息,对数据准确性的要求不高时,企业可以选择使用UDP服务器,能够实现快速传输数据的功能。由于UDP服务器不需要连接建立过程和重传机制的束缚,UDP数据能够快速地从发
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla