上一章,求出了内参和畸变参数,通过上一张得到的参数,再拍一张棋盘格照片,我们就可一估计出棋盘格相对相机的姿态,即求出这张棋盘格的外参
import cv2
import numpy as np
def draw(img, corners, imgpts):
corner = tuple(corners[0].ravel())
img = cv2.line(img, corner, tuple(imgpts[0].ravel()), (255, 0, 0), 5)
img = cv2.line(img, corner, tuple(imgpts[1].ravel()), (0, 255, 0), 5)
img = cv2.line(img, corner, tuple(imgpts[2].ravel()), (0, 0, 255), 5)
return img
# 标定图像
def calibration_photo(photo_path):
# 设置要标定的角点个数
x_nums = 11 # x方向上的角点个数
y_nums = 8
# 设置(生成)标定图在世界坐标中的坐标
world_point = np.zeros((x_nums * y_nums, 3), np.float32) # 生成x_nums*y_nums个坐标,每个坐标包含x,y,z三个元素
world_point[:, :2] = 15 * np.mgrid[:x_nums, :y_nums].T.reshape(-1, 2) # mgrid[]生成包含两个二维矩阵的矩阵,每个矩阵都有x_nums列,y_nums行
print('world point:',world_point)
# .T矩阵的转置
# reshape()重新规划矩阵,但不改变矩阵元素
# 设置世界坐标的坐标
axis = 15* np.float32([[3, 0, 0], [0, 3, 0], [0, 0, -3]]).reshape(-1, 3)
# 设置角点查找限制
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
image = cv2.imread(photo_path)
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# 查找角点
ok, corners = cv2.findChessboardCorners(gray, (x_nums, y_nums), )
# print(ok)
if ok:
# 获取更精确的角点位置
exact_corners = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)
# 获取外参
_, rvec, tvec, inliers = cv2.solvePnPRansac(world_point, exact_corners, mtx, dist)
#获得的旋转矩阵是向量,是3×1的矩阵,想要还原回3×3的矩阵,需要罗德里格斯变换Rodrigues,
rotation_m, _ = cv2.Rodrigues(rvec)#罗德里格斯变换
# print(rotation_m)
# print('旋转矩阵是:\n', rvec)
# print('平移矩阵是:\n', tvec)
rotation_t = np.hstack([rotation_m,tvec])
rotation_t_Homogeneous_matrix = np.vstack([rotation_t,np.array([[0, 0, 0, 1]])])
print(rotation_t_Homogeneous_matrix)
imgpts, jac = cv2.projectPoints(axis, rvec, tvec, mtx, dist)
# 可视化角点
img = draw(image, corners, imgpts)
cv2.imshow('img', img)
return rotation_t_Homogeneous_matrix # 返回旋转矩阵和平移矩阵组成的其次矩阵
if __name__ == '__main__':
# 读取相机内参
with np.load('D:\\ML\\Project_python\\my_code\\video_and_img\\checkerboard.npz') as X:
mtx, dist = [X[i] for i in ('mtx', 'dist')]
print(mtx, '\n', dist)
photo_path = "D:\\ML\\Project_python\\my_code\\video_and_img\\checkerboard\\WIN_20191123_11_54_24_Pro.jpg" # 标定图像保存路径
calibration_photo(photo_path)
cv2.waitKey()
cv2.destroyAllWindows()