机器学习之模型的保存与加载

模型的保存与加载

      当训练或者计算好一个模型之后,如果别人需要我们提供预测结果,就需要保存模型(主要是保存算法的参数)

sklearn模型的保存和加载API

from sklearn.externals import joblib

  • 保存:joblib.dump(rf,‘test.pkl’)
  • 加载:estimator = joblib.load(‘test.pkl’)
线性回归的模型保存加载案例

      以线性回归的岭回归对boston房价进行预测的案例,进行模型的保存于加载:
代码:

  1. 模型保存
    (1)导入包
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import Ridge
from sklearn.externals import joblib

(2)编写linear3()函数:

def linear3():
    '''
    岭回归的方法对波士顿房价进行预测
    :return:
    '''
    # 1.获取数据
    boston = load_boston()
    # 2.划分数据集
    x_train,x_test,y_train,y_test = train_test_split(boston.data, boston.target, random_state= 22)
    # 3.特征工程:标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4.预估器流程
    estimator = Ridge(alpha=0.5,max_iter=10000)
    estimator.fit(x_train,y_train)
    # 保存模型
    joblib.dump(estimator,"ridge_linear.pkl")

    # 5.得出模型
    print("岭回归权重系数为:\n",estimator.coef_)
    print("岭回归偏置为:\n",estimator.intercept_)
    # 6.评估模型
    y_predict = estimator.predict(x_test)
    #print("岭回归的y_predict为:\n", y_predict)
    error = mean_squared_error(y_test,y_predict)
    print("岭回归-均方误差为:\n",error)
    return None

(1)调用linear3()函数:

if __name__ == "__main__":
    # 代码3:岭回归的方法对波士顿房价进行预测
    linear3()

到这里,模型就保存好了,下一步就是对保存好的模型进行加载:

  1. 加载
    (1)对linear()函数进行修改,代码如下:
def linear3():
    '''
    岭回归的方法对波士顿房价进行预测
    :return:
    '''
    # 1.获取数据
    boston = load_boston()
    # 2.划分数据集
    x_train,x_test,y_train,y_test = train_test_split(boston.data, boston.target, random_state= 22)
    # 3.特征工程:标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4.预估器流程
    #estimator = Ridge(alpha=0.5,max_iter=10000)
    #estimator.fit(x_train,y_train)
    # 保存模型
    #joblib.dump(estimator,"ridge_linear.pkl")
    # 模型加载
    estimator = joblib.load("ridge_linear.pkl")
    # 5.得出模型
    print("岭回归权重系数为:\n",estimator.coef_)
    print("岭回归偏置为:\n",estimator.intercept_)
    # 6.评估模型
    y_predict = estimator.predict(x_test)
    #print("岭回归的y_predict为:\n", y_predict)
    error = mean_squared_error(y_test,y_predict)
    print("岭回归-均方误差为:\n",error)
    return None

(2)调用linear3()函数:
(3)结果:
机器学习之模型的保存与加载_第1张图片

你可能感兴趣的:(机器学习)