全是干货,机器视觉基础应用知识详解

随着工业4.0时代的到来,机器视觉在智能制造业领域的作用越来越重要,为了能让更多用户获取机器视觉的相关基础知识,包括机器视觉技术是如何工作的、它为什么是实现流程自动化和质量改进的正确选择等。维视教育为您准备了这篇机器视觉入门学习资料。

机器视觉是一门学科技术,广泛应用于生产制造检测等工业领域,用来保证产品质量,控制生产流程,感知环境等。机器视觉系统是将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。

机器视觉优势:机器视觉系统具有高效率、高度自动化的特点,可以实现很高的分辨率精度与速度。机器视觉系统与被检测对象无接触,安全可靠。人工检测与机器视觉自动检测的主要区别有:
全是干货,机器视觉基础应用知识详解_第1张图片
机器视觉的应用领域:

•识别

标准一维码、二维码的解码

光学字符识别(OCR)和确认(OCV)

•检测

色彩和瑕疵检测

零件或部件的有无检测

目标位置和方向检测•测量

尺寸和容量检测

预设标记的测量,如孔位到孔位的距离

•机械手引导

输出空间坐标引导机械手精确定位

机器视觉系统的组成

•图像获取:光源、镜头、相机、采集卡、机械平台

•图像处理与分析:工控主机、图像处理分析软件、图形交互界面。

•判决执行:电传单元、机械单元
全是干货,机器视觉基础应用知识详解_第2张图片
光源—光路原理

照相机并不能看见物体,而是看见从物体表面反射过来的光。

镜面反射:平滑表面以对顶角反射光线

漫射反射:粗糙表面会从各个方向漫射光线

发散反射:多数表面既有纹理,又有平滑表面,会对光线进行发散反射
全是干货,机器视觉基础应用知识详解_第3张图片

•光源—作用和要求

在机器视觉中的作用

照亮目标,提高亮度

形成有利于图像处理的效果

克服环境光照影响,保证图像稳定性

用作测量的工具或参照

良好的光场设计要求

对比度明显,目标与背景的边界清晰

背景尽量淡化而且均匀,不干扰图像处理

与颜色有关的还需要颜色真实,亮度适中,不过曝或欠曝;

•光源—光场构造

明场:光线反射进入照相机

暗场:光线反射离开照相机
全是干货,机器视觉基础应用知识详解_第4张图片
•光源—构造光源

使用不同照明技术对被测目标会产生不同的影响,以滚珠轴承为例:
在这里插入图片描述
•相机

种类:线&面、隔/逐、黑/彩、数/模、低/高、CCD/CMOS

指标:象元尺寸、分辨率、靶面大小、感应曲线、动态范围、灵敏度、速度噪声、填充因子、体积、质量、工作环境等

工作模式:Free run、Trigger(多种)、长时间曝光等

传输方式:GIGE,Cameralinker,模拟
全是干货,机器视觉基础应用知识详解_第5张图片
•相机–按照图像传感器区分

CCD相机:使用CCD感光芯片为图像传感器的相机,集光电转换及电荷存贮、电荷转移、信号读取于一体,是典型的固体成像器件。

CMOS相机:使用CMOS感光芯片为图像传感器的相机 ,将光敏元阵列、图像信号放大器、信号读取电路、模数转换电路、图像信号处理器及控制器集成在一块芯片上,还具有局部像素的编程随机访问的优点。

•相机–按照输出图像颜色区分:

单色相机:输出图像为单色图像的相机。

彩色相机:输出图像为彩色图像的相机。

•相机–按输出信号区分

模拟信号相机:从传感器中传出的信号,被转换成模拟电压信号,即普通视频信号后再传到图像采集卡中。

数字信号相机:信号自传感器中的像素输出后,在相机内部直接数字化并输出。数字相机又包含1394相机、USB相机、Gige相机、CameraLink相机等

•相机–按照传感器类型区分

面扫描相机:传感器上像素呈面状分布的相机,其所成图像为二维“面”图像。

线扫描相机:传感器上呈线状(一行或三行)分布的相机,其所成图像为一维“线”图像。

•相机–CMOS VS CCD
全是干货,机器视觉基础应用知识详解_第6张图片

•相机–传感器的尺寸

图像传感器感光区域的面积大小。这个尺寸直接决定了整个系统的物理放大率。如:1/3“、1/2”等。绝大多数模拟相机的传感器的长宽比例是4:3 (H:V),数字相机的长宽比例则包括多种:1:1,4:3,3:2 等。

•相机–像素

是成像于相机芯片的图像的最小组成单位。以200万像素的相机为例,满屏有1600*1200个像素,成像于1/1.8英寸大小的CCD芯片。
全是干货,机器视觉基础应用知识详解_第7张图片

•相机–分辨率

由相机所采用的芯片分辨率决定,是芯片靶面排列的像元数量。通常面阵相机的分辨率用水平和垂直分辨率两个数字表示,如:1920(H)x 1080(V),前面的数字表示每行的像元数量,即共有1920个像元,后面的数字表示像元的行数,即1080行。

•相机–帧率和行频

由相机的帧率/行频表示相机采集图像的频率,通常面阵相机用帧率表示,单位fps(Frame Per second),如30fps,表示相机在1秒钟内最多能采集30帧图像;线性相机通常用行频表示,单位KHz,如12KHz表示相机在1秒钟内最多能采集12000行图像数据。

•相机–快门速度(Shutter Speed)

CCD/CMOS相机多数采用电子快门,通过电信号脉冲的宽度来控制传感器的光积分(曝光)时间。对于一般性能的的相机快门速度可以达到1/10000-1/100000秒。

卷帘快门(Rolling Shutter):多数CMOS图像传感器上使用的快门,其特征是逐行曝光,每一行的曝光时间不一致。

全局快门(Global Shutter):CCD传感器和极少数CMOS传感器采用的快门,传感器上所有像素同时刻曝光。

•镜头—主要参数

工业的镜头大都是多组镜片组合在一起的。计算时会忽略厚度对透镜的影响将其等效成没有厚度的播透镜模型,即理想凸透镜。

参数:焦距/视场/物距/像距/光圈/景深/分辨力/放大倍数/畸变/接口
全是干货,机器视觉基础应用知识详解_第8张图片

分辨率:对色彩和纹理的分辨能力。

畸变:镜头中心区域和四周区域的放大倍数不相同。

畸变的校正一般用黑白分明的方格图像来进行,过程并不复杂。一般如果畸变小于2%,人眼观察不到;若畸变小于CCD的一个像素,摄像机也看不见。
全是干货,机器视觉基础应用知识详解_第9张图片

•镜头—分类

CCTV镜头

专业摄影镜头

远心镜头

•镜头—远心镜头

在测量系统中,物距常发生变化,从而使像高发生变化,所以测得的物体尺寸也发生变化,即产生了测量误差;即使物距是固定的,也会因为CCD敏感表面不易精确调整在像平面上,同样也会产生测量误差。采用远心物镜可以消除物距变化带来的测量误差,而远心物镜则可以消除CCD位置不准带来的测量误差。
全是干货,机器视觉基础应用知识详解_第10张图片

你可能感兴趣的:(机器视觉)