HBase的预分区、rowKey设计技巧、协处理器

文章目录

  • HBase的预分区
    • 1、为何要预分区?
    • 2、如何预分区?
    • 3、如何设定预分区?
      • 1、手动指定预分区
      • 2、使用16进制算法生成预分区
      • 3、分区规则创建于文件中
      • 4、使用JavaAPI创建预分区
  • HBase的rowKey设计技巧
    • 1 rowkey长度原则
    • 2 rowkey散列原则
    • 3 rowkey唯一原则
    • 什么是热点
  • HBase的协处理器
    • 1、 起源
    • 2、 协处理器有两种: observer 和 endpoint
    • 3、协处理器加载方式
    • 4、 协处理器卸载
    • 5、 协处理器Observer应用实战
      • 第一步:HBase当中创建第一张表proc1
      • 第二步:Hbase当中创建第二张表proc2
      • 第三步:开发HBase的协处理器
      • 第四步:将项目打成jar包,并上传到HDFS上面
      • 第五步:将打好的jar包挂载到proc1表当中去
      • 第六步:proc1表当中添加数据

HBase的预分区

1、为何要预分区?

  • 增加数据读写效率
  • 负载均衡,防止数据倾斜
  • 方便集群容灾调度region
  • 优化Map数量

2、如何预分区?

每一个region维护着startRow与endRowKey,如果加入的数据符合某个region维护的rowKey范围,则该数据交给这个region维护。

3、如何设定预分区?

1、手动指定预分区

hbase(main):001:0> create ‘staff’,‘info’,‘partition1’,SPLITS => [‘1000’,‘2000’,‘3000’,‘4000’]
完成后如图:
HBase的预分区、rowKey设计技巧、协处理器_第1张图片

2、使用16进制算法生成预分区

hbase(main):003:0> create 'staff2','info','partition2',{NUMREGIONS => 15, SPLITALGO => 'HexStringSplit'}

完成后如图:
HBase的预分区、rowKey设计技巧、协处理器_第2张图片

3、分区规则创建于文件中

创建splits.txt文件内容如下:
cd /export/servers/
vim splits.txt

aaaa
bbbb
cccc
dddd

然后执行:

hbase(main):004:0> create 'staff3','partition2',SPLITS_FILE => '/export/servers/splits.txt'

成功后如图:
HBase的预分区、rowKey设计技巧、协处理器_第3张图片

4、使用JavaAPI创建预分区

Java代码如下:

/**
     * 通过javaAPI进行HBase的表的创建以及预分区操作
     */
    @Test
    public void hbaseSplit() throws IOException {
        //获取连接
        Configuration configuration = HBaseConfiguration.create();
        configuration.set("hbase.zookeeper.quorum", "node01:2181,node02:2181,node03:2181");
        Connection connection = ConnectionFactory.createConnection(configuration);
        Admin admin = connection.getAdmin();
        //自定义算法,产生一系列Hash散列值存储在二维数组中
        byte[][] splitKeys = {{1,2,3,4,5},{'a','b','c','d','e'}};


        //通过HTableDescriptor来实现我们表的参数设置,包括表名,列族等等
        HTableDescriptor hTableDescriptor = new HTableDescriptor(TableName.valueOf("stuff4"));
        //添加列族
        hTableDescriptor.addFamily(new HColumnDescriptor("f1"));
        //添加列族
        hTableDescriptor.addFamily(new HColumnDescriptor("f2"));
        admin.createTable(hTableDescriptor,splitKeys);
        admin.close();

    }

HBase的rowKey设计技巧

HBase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这个三个维度可以对HBase中的数据进行快速定位。
HBase中rowkey可以唯一标识一行记录,在HBase查询的时候,有以下几种方式:

  1. 通过get方式,指定rowkey获取唯一一条记录
  2. 通过scan方式,设置startRow和stopRow参数进行范围匹配
  3. 全表扫描,即直接扫描整张表中所有行记录

1 rowkey长度原则

rowkey是一个二进制码流,可以是任意字符串,最大长度64kb,实际应用中一般为10-100bytes,以byte[]形式保存,一般设计成定长。
建议越短越好,不要超过16个字节,原因如下:

  • 数据的持久化文件HFile中是按照KeyValue存储的,如果rowkey过长,比如超过100字节,1000w行数据,光rowkey就要占用100*1000w=10亿个字节,将近1G数据,这样会极大影响HFile的存储效率;
  • MemStore将缓存部分数据到内存,如果rowkey字段过长,内存的有效利用率就会降低,系统不能缓存更多的数据,这样会降低检索效率。

2 rowkey散列原则

如果rowkey按照时间戳的方式递增,不要将时间放在二进制码的前面,建议将rowkey的高位作为散列字段,由程序随机生成,低位放时间字段,这样将提高数据均衡分布在每个RegionServer,以实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息,所有的数据都会集中在一个RegionServer上,这样在数据检索的时候负载会集中在个别的RegionServer上,造成热点问题,会降低查询效率。

3 rowkey唯一原则

必须在设计上保证其唯一性,rowkey是按照字典顺序排序存储的,因此,设计rowkey的时候,要充分利用这个排序的特点,将经常读取的数据存储到一块,将最近可能会被访问的数据放到一块。

什么是热点

HBase中的行是按照rowkey的字典顺序排序的,这种设计优化了scan操作,可以将相关的行以及会被一起读取的行存取在临近位置,便于scan。然而糟糕的rowkey设计是热点的源头。
热点发生在大量的client直接访问集群的一个或极少数个节点(访问可能是读,写或者其他操作)。大量访问会使热点region所在的单个机器超出自身承受能力,引起性能下降甚至region不可用,这也会影响同一个RegionServer上的其他region,由于主机无法服务其他region的请求。
设计良好的数据访问模式以使集群被充分,均衡的利用。为了避免写热点,设计rowkey使得不同行在同一个region,但是在更多数据情况下,数据应该被写入集群的多个region,而不是一个。下面是一些常见的避免热点的方法以及它们的优缺点:

  • 1加盐
    这里所说的加盐不是密码学中的加盐,而是在rowkey的前面增加随机数,具体就是给rowkey分配一个随机前缀以使得它和之前的rowkey的开头不同。分配的前缀种类数量应该和你想使用数据分散到不同的region的数量一致。加盐之后的rowkey就会根据随机生成的前缀分散到各个region上,以避免热点。
  • 2哈希
    哈希会使同一行永远用一个前缀加盐。哈希也可以使负载分散到整个集群,但是读却是可以预测的。使用确定的哈希可以让客户端重构完整的rowkey,可以使用get操作准确获取某一个行数据。
  • 3反转
    第三种防止热点的方法时反转固定长度或者数字格式的rowkey。这样可以使得rowkey中经常改变的部分(最没有意义的部分)放在前面。这样可以有效的随机rowkey,但是牺牲了rowkey的有序性。
    反转rowkey的例子以手机号为rowkey,可以将手机号反转后的字符串作为rowkey,这样的就避免了以手机号那样比较固定开头导致热点问题
  • 3时间戳反转
    一个常见的数据处理问题是快速获取数据的最近版本,使用反转的时间戳作为rowkey的一部分对这个问题十分有用,可以用 Long.Max_Value - timestamp 追加到key的末尾,例如 [key][reverse_timestamp] , [key] 的最新值可以通过scan [key]获得[key]的第一条记录,因为HBase中rowkey是有序的,第一条记录是最后录入的数据。
  • 其他一些建议:
    尽量减少行键和列族的大小在HBase中,value永远和它的key一起传输的。当具体的值在系统间传输时,它的rowkey,列名,时间戳也会一起传输。如果你的rowkey和列名很大,这个时候它们将会占用大量的存储空间。
    列族尽可能越短越好,最好是一个字符。
    冗长的属性名虽然可读性好,但是更短的属性名存储在HBase中会更好。

HBase的协处理器

http://hbase.apache.org/book.html#cp

1、 起源

Hbase 作为列族数据库最经常被人诟病的特性包括:无法轻易建立“二级索引”,难以执 行求和、计数、排序等操作。比如,在旧版本的(<0.92)Hbase 中,统计数据表的总行数,需 要使用 Counter 方法,执行一次 MapReduce Job 才能得到。虽然 HBase 在数据存储层中集成
了 MapReduce,能够有效用于数据表的分布式计算。然而在很多情况下,做一些简单的相 加或者聚合计算的时候, 如果直接将计算过程放置在 server 端,能够减少通讯开销,从而获 得很好的性能提升。于是, HBase 在 0.92 之后引入了协处理器(coprocessors),实现一些激动
人心的新特性:能够轻易建立二次索引、复杂过滤器(谓词下推)以及访问控制等。

2、 协处理器有两种: observer 和 endpoint

(1) Observer 类似于传统数据库中的触发器,当发生某些事件的时候这类协处理器会被 Server 端调用。Observer Coprocessor 就是一些散布在 HBase Server 端代码中的 hook 钩子, 在固定的事件发生时被调用。比如: put 操作之前有钩子函数 prePut,该函数在 put 操作
执行前会被 Region Server 调用;在 put 操作之后则有 postPut 钩子函数

以 HBase0.92 版本为例,它提供了三种观察者接口:
● RegionObserver:提供客户端的数据操纵事件钩子: Get、 Put、 Delete、 Scan 等。
● WALObserver:提供 WAL 相关操作钩子。
● MasterObserver:提供 DDL-类型的操作钩子。如创建、删除、修改数据表等。
到 0.96 版本又新增一个 RegionServerObserver
下图是以 RegionObserver 为例子讲解 Observer 这种协处理器的原理:
HBase的预分区、rowKey设计技巧、协处理器_第4张图片
2) Endpoint 协处理器类似传统数据库中的存储过程,客户端可以调用这些 Endpoint 协处 理器执行一段 Server 端代码,并将 Server 端代码的结果返回给客户端进一步处理,最常 见的用法就是进行聚集操作。如果没有协处理器,当用户需要找出一张表中的最大数据,即
max 聚合操作,就必须进行全表扫描,在客户端代码内遍历扫描结果,并执行求最大值的 操作。这样的方法无法利用底层集群的并发能力,而将所有计算都集中到 Client 端统一执 行,势必效率低下。利用 Coprocessor,用户可以将求最大值的代码部署到 HBase Server 端,
HBase 将利用底层 cluster 的多个节点并发执行求最大值的操作。即在每个 Region 范围内 执行求最大值的代码,将每个 Region 的最大值在 Region Server 端计算出,仅仅将该 max 值返回给客户端。在客户端进一步将多个 Region 的最大值进一步处理而找到其中的最大值。
这样整体的执行效率就会提高很多
下图是 EndPoint 的工作原理:
HBase的预分区、rowKey设计技巧、协处理器_第5张图片
(3)总结
Observer 允许集群在正常的客户端操作过程中可以有不同的行为表现
Endpoint 允许扩展集群的能力,对客户端应用开放新的运算命令
observer 类似于 RDBMS 中的触发器,主要在服务端工作
endpoint 类似于 RDBMS 中的存储过程,主要在 client 端工作
observer 可以实现权限管理、优先级设置、监控、 ddl 控制、 二级索引等功能
endpoint 可以实现 min、 max、 avg、 sum、 distinct、 group by 等功能

3、协处理器加载方式

协处理器的加载方式有两种,我们称之为静态加载方式( Static Load) 和动态加载方式 ( Dynamic Load)。 静态加载的协处理器称之为 System Coprocessor,动态加载的协处理器称 之为 Table Coprocessor
1、静态加载
通过修改 hbase-site.xml 这个文件来实现, 启动全局 aggregation,能过操纵所有的表上 的数据。只需要添加如下代码:

<property>
<name>hbase.coprocessor.user.region.classes</name>
<value>org.apache.hadoop.hbase.coprocessor.AggregateImplementation</value>
</property>

为所有 table 加载了一个 cp class,可以用” ,”分割加载多个 class
2、动态加载
启用表 aggregation,只对特定的表生效。通过 HBase Shell 来实现。
disable 指定表。 hbase> disable ‘mytable’
添加 aggregation
hbase> alter ‘mytable’, METHOD => ‘table_att’,‘coprocessor’=>
‘|org.apache.Hadoop.hbase.coprocessor.AggregateImplementation||’
重启指定表 hbase> enable ‘mytable’

4、 协处理器卸载

HBase的预分区、rowKey设计技巧、协处理器_第6张图片

5、 协处理器Observer应用实战

HBase的预分区、rowKey设计技巧、协处理器_第7张图片
通过协处理器Observer实现hbase当中一张表插入数据,然后通过协处理器,将数据复制一份保存到另外一张表当中去,但是只取当第一张表当中的部分列数据保存到第二张表当中去

第一步:HBase当中创建第一张表proc1

在HBase当中创建一张表,表名user2,并只有一个列族info
cd /export/servers/hbase-1.2.0-cdh5.14.0/
bin/hbase shell
hbase(main):053:0> create ‘proc1’,‘info’

第二步:Hbase当中创建第二张表proc2

创建第二张表user3,作为目标表,将第一张表当中插入数据的部分列,使用协处理器,复制到user3表当中来

hbase(main):054:0> create 'proc2','info'

第三步:开发HBase的协处理器

开发HBase的协处理器Copo

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.coprocessor.BaseRegionObserver;
import org.apache.hadoop.hbase.coprocessor.ObserverContext;
import org.apache.hadoop.hbase.coprocessor.RegionCoprocessorEnvironment;
import org.apache.hadoop.hbase.regionserver.wal.WALEdit;

import java.io.IOException;

public class MyProcessor extends BaseRegionObserver {

    @Override
    public void prePut(ObserverContext<RegionCoprocessorEnvironment> e, Put put, WALEdit edit, Durability durability) throws IOException {
        //获取连接
        Configuration configuration = HBaseConfiguration.create();
        configuration.set("hbase.zookeeper.quorum", "node01,node02,node03");
        Connection connection = ConnectionFactory.createConnection(configuration);
        Cell nameCell = put.get("info".getBytes(), "name".getBytes()).get(0);
        Put put1 = new Put(put.getRow());
        put1.add(nameCell);
        Table reverseuser = connection.getTable(TableName.valueOf("proc2"));
        reverseuser.put(put1);
        reverseuser.close();
    }
}

第四步:将项目打成jar包,并上传到HDFS上面

将我们的协处理器打成一个jar包,此处不需要用任何的打包插件即可,然后上传到hdfs
HBase的预分区、rowKey设计技巧、协处理器_第8张图片
将打好的jar包上传到linux的/export/servers路径下

cd /export/servers
mv original-hbaseStudy-1.0-SNAPSHOT.jar  processor.jar
hdfs dfs -mkdir -p /processor
hdfs dfs -put processor.jar /processor

第五步:将打好的jar包挂载到proc1表当中去

hbase(main):056:0> describe 'proc1'
hbase(main):055:0> alter 'proc1',METHOD => 'table_att','Coprocessor'=>'hdfs://node01:8020/processor/processor.jar|cn.itcast.hbasemr.MyProcessor|1001|'

再次查看user2表,

hbase(main):043:0> describe 'user2'

HBase的预分区、rowKey设计技巧、协处理器_第9张图片
可以查看到我们的卸载器已经加载了

第六步:proc1表当中添加数据

/**
     *
     */
    @Test
    public void testPut() throws Exception{
        //获取连接
        Configuration configuration = HBaseConfiguration.create();
        configuration.set("hbase.zookeeper.quorum", "node01,node02");
        Connection connection = ConnectionFactory.createConnection(configuration);
        Table user5 = connection.getTable(TableName.valueOf("proc1"));
        Put put1 = new Put(Bytes.toBytes("hello_world"));
        put1.addColumn(Bytes.toBytes("info"),"name".getBytes(),"helloworld".getBytes());
        put1.addColumn(Bytes.toBytes("info"),"gender".getBytes(),"abc".getBytes());
        put1.addColumn(Bytes.toBytes("info"),"nationality".getBytes(),"test".getBytes());
        user5.put(put1);
        byte[] row = put1.getRow();
        System.out.println(Bytes.toString(row));
        user5.close();

注意:如果需要卸载我们的协处理器,那么进入hbase的shell命令行,执行以下命令即可

disable 'proc1'
alter 'proc1',METHOD=>'table_att_unset',NAME=>'coprocessor$1'
enable 'proc1'

你可能感兴趣的:(大数据)