论文链接:https://arxiv.org/abs/1709.01507
代码地址:https://github.com/hujie-frank/SENet
PyTorch代码地址:https://github.com/miraclewkf/SENet-PyTorch
Sequeeze-and-Excitation(SE) block并不是一个完整的网络结构,而是一个子结构,可以嵌到其他分类或检测模型中,作者采用SENet block和ResNeXt结合在ILSVRC 2017的分类项目中拿到第一,在ImageNet数据集上将top-5 error降低到2.251%,原先的最好成绩是2.991%。
作者在文中将SENet block插入到现有的多种分类网络中,都取得了不错的效果。我们应该知道卷积神经网络中,会有很多参数作用很小甚至是无效的,这在压缩模型的时候被广泛用到。SENet的核心思想在于通过网络根据loss去学习特征权重,使得有效的feature map权重大,无效或效果小的feature map权重小的方式训练模型达到更好的结果。当然,SE block嵌在原有的一些分类网络中不可避免地增加了一些参数和计算量,但是在效果面前还是可以接受的。
也许通过给某一层特征配备权重的想法很多人都有,那为什么只有SENet成功了?个人认为主要原因在于权重具体怎么训练得到。就像有些是直接根据feature map的数值分布来判断;有些可能也利用了loss来指导权重的训练,不过全局信息该怎么获取和利用也是因人而异。
Figure1表示一个SE block。主要包含Squeeze和Excitation两部分,接下来结合公式来讲解Figure1。
首先Ftr这一步是转换操作,也就是原网络而已,在文中就是一个标准的卷积操作而已,输入输出的定义如下表示。
它的操作本质上就是卷积操作,定义如下(vc表示第c个卷积核,xs表示第s个输入):
经过Ftr后,我们就得到了提取后的特征(卷积神经网络本质上就是提取特征)。这时候的特征shape为H*W*C,H和W分别为高和宽,C为channel数目(Figure1中左数第二个)。
接下来就是Squeeze操作,公式非常简单,就是一个global average pooling:
把H*W*C的输入转换为1*1*C的输出,对应Figure1中的Fsq操作。为什么会有这一步呢?这一步的结果相当于表明该层C个feature map的数值分布情况,或者叫全局信息。
再接下来就是Excitation操作,如公式3。直接看最后一个等号,前面squeeze得到的结果是z,这里先用W1乘以z,就是一个全连接层操作,W1的维度是C/r * C,这个r是一个缩放参数,在文中取的是16,这个参数的目的是为了减少channel个数从而降低计算量。又因为z的维度是1*1*C,所以W1z的结果就是1*1*C/r;然后再经过一个ReLU层,输出的维度不变;然后再和W2相乘,和W2相乘也是一个全连接层的过程,W2的维度是C*C/r,因此输出的维度就是1*1*C;最后再经过sigmoid函数,得到s。
也就是说最后得到的这个s的维度是1*1*C,C表示channel数目。这个s其实是本文的核心,它是用来刻画tensor U中C个feature map的权重。而且这个权重是通过前面这些全连接层和非线性层学习得到的,因此可以end-to-end训练。这两个全连接层的作用就是融合各通道的feature map信息,因为前面的squeeze都是在某个channel的feature map里面操作。
在得到s之后,就可以对原来的tensor U操作了,就是下面的公式4。也很简单,就是channel-wise multiplication,什么意思呢?uc是一个二维矩阵,sc是一个数,也就是权重,因此相当于把uc矩阵中的每个值都乘以sc。对应Figure1中的Fscale。
公式就是以上所示了。我们看看在实际网络中如何添加SE block,首先是inception:
其次是resnet:
看完结构,再来看添加了SE block后,模型的参数到底增加了多少。其实从前面的介绍可以看出增加的参数主要来自两个全连接层,两个全连接层的维度都是C/r * C,那么这两个全连接层的参数量就是2*C^2/r。以ResNet为例,假设ResNet一共包含S个stage,每个Stage包含N个重复的residual block,那么整个添加了SE block的ResNet增加的参数量就是下面的公式:
除了公式介绍,文中还举了更详细的例子来说明参数增加大概是多少百分比:In total, SE-ResNet-50 introduces 2.5 million additional parameters beyond the 25 million parameters required by ResNet-50, corresponding to a 10% increase in the total number of parameters。而且从公式5可以看出,增加的参数和C关系很大,而网络越到高层,其feature map的channel个数越多,也就是C越大,因此大部分增加的参数都是在高层。同时作者通过实验发现即便去掉最后一个stage的SE block,对模型的影响也非常小(<0.1% top-1 error),因此如果你对参数量的限制要求很高,倒是可以这么做,毕竟具体在哪些stage,哪些block中添加SE block都是自由定义的。
Table2是将SE block添加到ResNet,ResNeXt和Inception三个模型中的效果对比,数据集都是ImageNet,可以看出计算复杂度的增加并不明显(增加的主要是全连接层,全连接层其实主要还是增加参数量,对速度影响不会太大)。
既然是冠军算法,文中也介绍了当时取得冠军时的算法大致组成:Our winning entry comprised a small ensemble of SENets that employed a standard multi-scale and multi-crop fusion strategy to obtain a 2.251% top-5 error on the test set.This result represents a 25% relative improvement on the winning entry of 2016 (2.99% top-5 error). 也就是说其实是多模型做了融合。
另外前面提到过在SE block中第一个全连接层的维度是C/r * C,这个r在文中取的是16,作用在于将原来输入是1*1*C的feature map缩减为1*1*C/r的feature map,这一就降低了后面的计算量。而下面的Table5则是关于这个参数r取不同值时对结果和模型大小的影响。
当然除此之外作者还做了一些实验,具体可以看原文章。
本文参考:
https://blog.csdn.net/u014380165/article/details/78006626
https://blog.csdn.net/evan123mg/article/details/80058077