- Python实现简单的机器学习算法
master_chenchengg
pythonpython办公效率python开发IT
Python实现简单的机器学习算法开篇:初探机器学习的奇妙之旅搭建环境:一切从安装开始必备工具箱第一步:安装Anaconda和JupyterNotebook小贴士:如何配置Python环境变量算法初体验:从零开始的Python机器学习线性回归:让数据说话数据准备:从哪里找数据编码实战:Python实现线性回归模型评估:如何判断模型好坏逻辑回归:从分类开始理论入门:什么是逻辑回归代码实现:使用skl
- Python前沿技术:机器学习与人工智能
4.0啊
Python人工智能python机器学习
Python前沿技术:机器学习与人工智能一、引言随着科技的飞速发展,机器学习和人工智能(AI)已经成为了计算机科学领域的热门话题。Python作为一门易学易用且功能强大的编程语言,已经成为了这两个领域的首选语言之一。本文将深入探讨Python在机器学习和人工智能领域的应用,以及一些前沿技术和工具。二、Python机器学习基础2.1机器学习概述机器学习是人工智能(AI)的一个关键子集,它的核心在于让
- Python自动化办公2.0 即将发布
百里图书
自动化人工智能python
第一节课:数据整理与清洗第二节课:数据筛选、过滤与排序第三节课:高级数据处理技巧第四节课:数据可视化与实践案例第五节课:统计分析与报表第六节:常见的Excel报表与下方的课程形成知识体系:Python自动化办公(面向2020,Python3.7,不断更新ing)_在线视频教程-CSDN程序员研修院https://edu.csdn.net/course/detail/28031Python机器学习教
- 【Python机器学习】循环神经网络(RNN)——传递数据并训练
zhangbin_237
Python机器学习机器学习pythonrnn人工智能开发语言深度学习神经网络
与其他Keras模型一样,我们需要向.fit()方法传递数据,并告诉它我们希望训练多少个训练周期(epoch):model.fit(X_train,y_train,batch_size=batch_size,epochs=epochs,validation_data=(X_test,y_test))因为个人小电脑内存不足,所以吧maxlen参数改成了100重新运行。保存模型:model_struc
- 【Python机器学习】循环神经网络(RNN)——对RNN进行预测
zhangbin_237
Python机器学习机器学习pythonrnn深度学习人工智能自然语言处理
目录有状态性双向RNN编码向量如果有一个经过训练的模型,接下来就可以对其进行预测:sample_1="""Ihatethatthedismalweatherhadmedownforsolong,whenwillitbreak!Ugh,whendoeshappinessreturn?Thesunisblindingandthepuffycloudsaretoothin.Ican'twaitforth
- Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明
仙魁XAN
Python机器学习基础+实战案例机器学习python分箱离散化线性模型与树交互特征与多项式特征
Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明目录Python机器学习基础之数据表示与特征工程【分箱、离散化、线性模型与树/交互特征与多项式特征】的简单说明一、简单介绍二、分箱、离散化、线性模型与树三、交互特征与多项式特征附录一、参考文献一、简单介绍Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于
- 【Python机器学习】机器学习任务中常见的数据异质问题和模型异构问题是什么?解决策略是什么?
惊鸿若梦一书生
Python机器学习python深度学习开发语言
文章目录数据异质模型异构数据异质数据异质问题(Heterogeneityindata)通常指数据集内部的不一致性,这些不一致性可能来自多种源。在实际应用中,数据异质性可以表现为多种形式,包括:不同来源的数据:数据可能来自不同的数据源,每个源可能采用不同的数据收集方法和标准。例如,社交媒体数据和传统调查数据就可能有很大的差异。不同类型的数据:数据可以是结构化的(例如,数据库中的表格数据),半结构化的
- 【Python机器学习】卷积神经网络(CNN)的工具包
zhangbin_237
Python机器学习机器学习pythoncnn神经网络自然语言处理开发语言
Python是神经网络工具包最丰富的语言之一。两个主要的神经网络架构分别是Theano和TensorFlow。这两者的底层计算深度依赖C语言,不过它们都提供了强大的PythonAPI。Torch在Python里面也有一个对应的API是PyTorch。这些框架都是高度抽象的工具集,适用于从头构建模型。Python社区开发了一些第三方库来简化这些底层架构的使用。其中Keras在API的友好性和功能性方
- 【Python机器学习】卷积神经网络(CNN)
zhangbin_237
Python机器学习机器学习pythoncnn开发语言自然语言处理
卷积神经网络(CNN)得名于在数据样本上用滑动窗口(或卷积)的概念。卷积在数学中应用很广泛,通常与时间序列数据相关。它是用一个可视化盒子在一个区域内滑动,如下图所示:构建块卷积神经网络最早出现在图像处理和图像识别领域,它能够捕捉每个样本中数据点之间的空间关系,也就能识别出图像中是猫还是狗。卷积网络,也称为convnet,不像传统的前馈网络那样对每个元素(图中的像素)分配权重,而是定义了一组在图像上
- python机器学习算法--贝叶斯算法
在下小天n
机器学习python机器学习算法
1.贝叶斯定理在20世纪60年代初就引入到文字信息检索中,仍然是文字分类的一种热门(基准)方法。文字分类是以词频为特征判断文件所属类型或其他(如垃圾邮件、合法性、新闻分类等)的问题。原理牵涉到概率论的问题,不在详细说明。sklearn.naive_bayes.GaussianNB(priors=None,var_smoothing=1e-09)#Bayes函数·priors:矩阵,shape=[n
- 【Rust】——采用发布配置自定义构建
Y小夜
Rust(官方文档重点总结)rust开发语言后端
博主现有专栏:C51单片机(STC89C516),c语言,c++,离散数学,算法设计与分析,数据结构,Python,Java基础,MySQL,linux,基于HTML5的网页设计及应用,Rust(官方文档重点总结),jQuery,前端vue.js,Javaweb开发,Python机器学习等主页链接:Y小夜-CSDN博客今日学习推荐:在当今这个飞速发展的信息时代,人工智能(AI)已经成为了一个不可或
- 【Rust】——高级类型
Y小夜
Rust(官方文档重点总结)rust开发语言后端
博主现有专栏:C51单片机(STC89C516),c语言,c++,离散数学,算法设计与分析,数据结构,Python,Java基础,MySQL,linux,基于HTML5的网页设计及应用,Rust(官方文档重点总结),jQuery,前端vue.js,Javaweb开发,Python机器学习等主页链接:Y小夜-CSDN博客目录为了类型安全和抽象而使用的newtype模式类型别名用来创建类型同义词不返回
- 【Python机器学习】NLP词频背后的含义——隐性语义分析
zhangbin_237
Python机器学习python机器学习自然语言处理人工智能开发语言
隐性语义分析基于最古老和最常用的降维技术——奇异值分解(SVD)。SVD将一个矩阵分解成3个方阵,其中一个是对角矩阵。SVD的一个应用是求逆矩阵。一个矩阵可以分解成3个最简单的方阵,然后对这些方阵求转置后再把它们相乘,就得到了原始矩阵的逆矩阵。它为我们提供了一个对大型复杂矩阵求逆的捷径。SVD适用于桁架结构的应力和应变分析等机械工程问题,它对电气工程中的电路分析也很有用,它甚至在数据科学中被用于基
- 【Python机器学习】NLP分词——利用分词器构建词汇表(三)——度量词袋之间的重合度
zhangbin_237
Python机器学习机器学习自然语言处理人工智能python开发语言
如果能够度量两个向量词袋之间的重合度,就可以很好地估计他们所用词的相似程度,而这也是它们语义上重合度的一个很好的估计。因此,下面用点积来估计一些新句子和原始的Jefferson句子之间的词袋向量重合度:importpandasaspdsentence="""ThomasJeffersonBeganbulidingMonticelliastheageof26.\n"""sentence=senten
- 【Python机器学习】NLP概述——深度处理
zhangbin_237
Python机器学习python机器学习自然语言处理人工智能机器人
自然语言处理流水线的各个阶段可以看作是层,就像是前馈神经网络中的层一样。深度学习就是通过在传统的两层机器学习模型架构(特征提取+建模)中添加额外的处理层来创建更复杂的模型和行为。上图中,前四层对应于聊天机器人流水线中的前两个阶段(特征提取和特征分析)。例如,词性标注(POS标注)是在聊天机器人流水线的分析阶段生成特征的一种方法。POS标签由默认的SpaCY流水线自动生成,该流水线包括上图中所有的前
- 【Python机器学习】NLP分词——词干还原的挑战
zhangbin_237
Python机器学习自然语言处理人工智能机器学习python开发语言
要想使用自然语言处理的相关应用,第一件事就是需要一个强大的词汇表。我们要把文档或任何字符串拆分为离散的有意义的词条,这里说的词条仅限于词、标点符号和数值,但是这里使用的技术可以很容易推广到字符序列包含的任何其他有意义的单元,比如ASCII表情符号、Unicode表情符号和数学符号。从文档中检索词条需要一些字符串处理方法,这些方法不仅仅是str.split(),处理时需要把标点符号与词分开,还需要将
- 【Python机器学习】NLP概述——自然语言智商
zhangbin_237
Python机器学习机器学习自然语言处理人工智能python机器人
就像人类的智能一样,如果不考虑多个智能维度,单凭一个智商分数是无法轻易衡量NLP流水线的能力的。衡量机器人系统能力的一种常见方法是:根据系统行为的复杂性和所需的人类监督成都这两个维度来衡量。但是对自然语言处理流水线而言,其目标是建立一个完全自动化的自然语言处理系统,会消除所有的人工监督(一旦模型被训练和部署)。因此,一对更好的IQ维度应该能捕捉到自然语言流水线复杂的广度和深度。像Alexa或All
- 【Python机器学习】NLP概述——聊天机器人的自然语言流水线
zhangbin_237
Python机器学习自然语言处理机器人人工智能python机器学习
构建对话引擎或者聊天机器人所需的NLP流水线类似于某些问答系统。聊天机器人需要4个处理阶段和一个数据库来维护过去语句和回复的记录。这4个处理阶段中的每个阶段都可以包含一个或多个并行或串行工作的处理算法。如下图所示:1、解析:从自然语言文本中提取特征、结构化数值数;2、分析:通过对文本的情感、语法合法度及语义打分,生成和组合特征;3、生成:使用模板、搜索或语言模型生成可能的回复;4、执行:根据对话历
- 《Python机器学习项目实战》书籍介绍
袁袁袁袁满
python机器学习开发语言
文章目录书籍介绍主要内容书籍目录书籍介绍《Python机器学习项目实战》带领大家在构建实际项目的过程中,掌握关键的机器学习概念!使用机器学习,我们可完成客户行为分析、价格趋势预测、风险评估等任务。要想掌握机器学习,需要有优质的范例、清晰的讲解和大量的练习。《Python机器学习项目实战》完全满足这三点!《Python机器学习项目实战》展示了现实、实用的机器学习场景,并全面、清晰地介绍了机器学习的关
- 【Python机器学习】NLP的部分实际应用
zhangbin_237
Python机器学习机器学习自然语言处理人工智能python大数据
自然语言处理在现实中非常多的应用,下表是其中的一些例子:应用示例1示例2示例3搜索web文档自动补全编辑拼写语法风格对话聊天机器人助手行程安排写作索引用语索引目录电子邮件垃圾邮件过滤分类优先级排序文本挖掘摘要知识提取医学诊断法律法律断案先例搜索传票分类新闻事件检索真相核查标题排字归属剽窃检测文字取证风格指导情感分析团队士气监控产品评论分类客户关怀行为预测金融选举预测营销创作电影脚本诗歌歌词如果在索
- python清华大学出版社答案_Python机器学习及实践
weixin_39805119
python清华大学出版社答案
第1章机器学习的基础知识1.1何谓机器学习1.1.1传感器和海量数据1.1.2机器学习的重要性1.1.3机器学习的表现1.1.4机器学习的主要任务1.1.5选择合适的算法1.1.6机器学习程序的步骤1.2综合分类1.3推荐系统和深度学习1.3.1推荐系统1.3.2深度学习1.4何为Python1.4.1使用Python软件的由来1.4.2为什么使用Python1.4.3Python设计定位1.4.
- Python机器学习笔记:CART算法实战
战争热诚
完整代码及其数据,请移步小编的GitHub传送门:请点击我如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote前言在python机器学习笔记:深入学习决策树算法原理一文中我们提到了决策树里的ID3算法,C4.5算法,并且大概的了
- python机器学习库Scikit-learn
崔吉龙
python语言中用来处理机器学习的库最重要的就是Scikit-learn,简称sklearn。被大多数科学家所钟爱,包括了构建良好的学习算法、误差函数和测试例程。在sklearn的核心有四种类型的类覆盖了所有机器学习功能:分类回归聚类分组转换数据虽然sklearn提供的算法比较多,但是他们都符合基本的接口定义,为了是使用不同的算法时,所使用的接口时统一的。sklearn提供了四个基本对象接口。评
- optuna,一个好用的Python机器学习自动化超参数优化库
牵着猫散步的鼠鼠
python开发语言
️个人主页:鼠鼠我捏,要死了捏的主页️付费专栏:Python专栏️个人学习笔记,若有缺误,欢迎评论区指正前言超参数优化是机器学习中的重要问题,它涉及在训练模型时选择最优的超参数组合,以提高模型的性能和泛化能力。Optuna是一个用于自动化超参数优化的库,它提供了有效的参数搜索算法和方便的结果可视化工具。目录前言
- 【机器学习笔记】 6 机器学习库Scikit-learn
RIKI_1
机器学习机器学习笔记scikit-learn
Scikit-learn概述Scikit-learn是基于NumPy、SciPy和Matplotlib的开源Python机器学习包,它封装了一系列数据预处理、机器学习算法、模型选择等工具,是数据分析师首选的机器学习工具包。自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归,降维和聚类四大机器学习算法。
- Python机器学习:Scikit-learn库与应用
数据小爬虫
api电商api机器学习pythonscikit-learn开发语言运维服务器
当涉及到Python机器学习时,Scikit-learn是一个非常流行且功能强大的库。它提供了广泛的算法和工具,使得机器学习变得简单而高效。下面是一个简单的Scikit-learn库与应用示例,其中包括代码。首先,确保你已经安装了Scikit-learn库。你可以使用pip命令来安装它:bash复制代码pipinstallscikit-learn接下来,我们将使用Scikit-learn来执行一个
- 见世面的成本有多低?这几个技术公众号告诉你答案
傅一平
独乐乐,不如众乐乐,为您精选以下公众号!人工智能爱好者社区专注人工智能、机器学习、数据科学等顶尖技术前沿科技成果研究、实战技巧。每周会有书豪采访记系列采访技术大佬文章和原创漫画文章,立即关注,掌握人工智能最新资讯与成果。号主是《R数据科学实战:工具详解与案例分析》书籍作者。大数据分析挖掘和Python机器学习商业智能BI、数据分析、数据挖掘、大数据、Python、机器学习、深度学习、算法等技术分享
- 如何安装Pytorch,CPU版本和GPU版本的安装流程。
JayGboy
pytorch人工智能python
1.PyTorch简介:PyTorch是一个开源的Python机器学习框架,专注于深度学习任务。它由Facebook的人工智能研究团队开发并维护,提供了丰富的工具和库,用于构建和训练各种深度神经网络模型。PyTorch使用动态计算图的概念,允许用户在运行时动态地定义、修改和调试计算图。这种灵活性使得模型构建和调试更加直观和方便,同时也支持更复杂的模型结构和控制流程。PyTorch采用Pythoni
- Python机器学习之交叉验证
一只怂货小脑斧
交叉验证是一种非常常用的对于模型泛化能力进行评估方法,交叉验证既可以解决数据集的数据量不够大问题,也可以解决参数调优的问题。常用的交叉验证方法有:简单交叉验证(HoldOut检验,例如train_test_split)、k折交叉验证(例如KFold)、自助法kfold是将数据集划分为K-折,只是划分数据集;cross_val_score是根据模型进行计算,计算交叉验证的结果,你可以简单认为就是cr
- 浏览器F12调试
知行合一。。。
测试技术功能测试
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录1浏览器F12开发者工具1.1F12开发者工具基本介绍1.2F12常规设置2标签页2.1Elements查看器2.2Network网络2.3Network抓包分析案例1:以登录百度账号
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin